Documentation Verification Report

SetSemiring

πŸ“ Source: Mathlib/MeasureTheory/SetSemiring.lean

Statistics

MetricCount
DefinitionsIsSetRing, IsSetSemiring, disjointOfDiff, disjointOfDiffUnion, disjointOfUnion, SetSemiring
6
Theoremsaccumulate_mem, biInter_mem, biUnion_mem, diff_mem, disjointed_mem, empty_mem, finsetSup_mem, iInter_le_mem, iUnion_le_mem, inter_mem, isSetSemiring, partialSups_mem, union_mem, Ioc, diff_eq_sUnion', diff_mem_supClosure, diff_sUnion_eq_sUnion_disjointOfDiffUnion, disjointOfDiffUnion_subset, disjointOfUnion_props, disjointOfUnion_subset, disjointOfUnion_subset_of_mem, disjoint_disjointOfDiffUnion, disjoint_sUnion_disjointOfDiff, disjoint_sUnion_disjointOfDiffUnion, empty_mem, empty_notMem_disjointOfDiff, empty_notMem_disjointOfDiffUnion, empty_notMem_disjointOfUnion, exists_disjoint_finset_diff_eq, exists_finpartition_diff, inter_mem, isPiSystem, isSetRing_supClosure, mem_supClosure_iff, notMem_disjointOfDiff, pairwiseDisjoint_biUnion_disjointOfUnion, pairwiseDisjoint_disjointOfDiff, pairwiseDisjoint_disjointOfDiffUnion, pairwiseDisjoint_disjointOfUnion, pairwiseDisjoint_disjointOfUnion_of_mem, pairwiseDisjoint_insert_disjointOfDiff, pairwiseDisjoint_union_disjointOfDiffUnion, sUnion_disjointOfDiff, sUnion_disjointOfDiffUnion_subset, sUnion_disjointOfUnion, sUnion_insert_disjointOfDiff, sUnion_union_disjointOfDiffUnion_of_subset, sUnion_union_sUnion_disjointOfDiffUnion_of_subset, subset_disjointOfDiff, subset_of_diffUnion_disjointOfDiffUnion, subset_of_mem_disjointOfDiffUnion, subset_of_mem_disjointOfUnion
52
Total58

MeasureTheory

Definitions

NameCategoryTheorems
IsSetRing πŸ“–CompData
3 mathmath: IsSetSemiring.isSetRing_supClosure, isSetRing_measurableCylinders, IsSetAlgebra.isSetRing
IsSetSemiring πŸ“–CompData
3 mathmath: isSetSemiring_measurableCylinders, IsSetRing.isSetSemiring, IsSetSemiring.Ioc

MeasureTheory.IsSetRing

Theorems

NameKindAssumesProvesValidatesDepends On
accumulate_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.accumulateβ€”Set.accumulate_zero_nat
Set.accumulate_succ
union_mem
biInter_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Finset.Nonempty
Set
Set.instMembership
Set.iInter
Finset
Finset.instMembership
β€”Finset.Nonempty.cons_induction
Set.iInter_congr_Prop
Set.iInter_iInter_eq_left
Finset.coe_cons
Set.biInter_insert
inter_mem
Finset.cons_eq_insert
biUnion_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.iUnion
Finset
Finset.instMembership
β€”Finset.induction
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
empty_mem
Finset.coe_insert
Set.biUnion_insert
union_mem
Finset.mem_insert_self
Finset.mem_insert_of_mem
diff_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.instSDiffβ€”β€”
disjointed_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
disjointed
BooleanAlgebra.toGeneralizedBooleanAlgebra
Set.instBooleanAlgebra
β€”disjointedRec
diff_mem
empty_mem πŸ“–mathematicalMeasureTheory.IsSetRingSet
Set.instMembership
Set.instEmptyCollection
β€”β€”
finsetSup_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Finset.sup_set_eq_biUnion
biUnion_mem
iInter_le_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.iInterβ€”Set.iInter_congr_Prop
Nat.instCanonicallyOrderedAdd
Set.iInter_iInter_eq_left
Set.biInter_le_succ
inter_mem
iUnion_le_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.iUnionβ€”Set.iUnion_congr_Prop
Nat.instCanonicallyOrderedAdd
Set.iUnion_iUnion_eq_left
Set.biUnion_le_succ
union_mem
inter_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.instInterβ€”Set.diff_diff_right_self
diff_mem
isSetSemiring πŸ“–mathematicalMeasureTheory.IsSetRingMeasureTheory.IsSetSemiringβ€”empty_mem
inter_mem
Finset.coe_singleton
diff_mem
Set.sUnion_singleton
partialSups_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
DFunLike.coe
OrderHom
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
partialSups
β€”Finset.sup'_eq_sup
Finset.nonempty_Iic
finsetSup_mem
union_mem πŸ“–mathematicalMeasureTheory.IsSetRing
Set
Set.instMembership
Set.instUnionβ€”β€”

MeasureTheory.IsSetSemiring

Definitions

NameCategoryTheorems
disjointOfDiff πŸ“–CompOp
9 mathmath: pairwiseDisjoint_insert_disjointOfDiff, empty_notMem_disjointOfDiff, sUnion_disjointOfDiff, notMem_disjointOfDiff, sUnion_insert_disjointOfDiff, pairwiseDisjoint_disjointOfDiff, subset_disjointOfDiff, MeasureTheory.eq_add_disjointOfDiff_of_subset, disjoint_sUnion_disjointOfDiff
disjointOfDiffUnion πŸ“–CompOp
11 mathmath: diff_sUnion_eq_sUnion_disjointOfDiffUnion, pairwiseDisjoint_union_disjointOfDiffUnion, disjoint_sUnion_disjointOfDiffUnion, sUnion_union_disjointOfDiffUnion_of_subset, sUnion_disjointOfDiffUnion_subset, disjointOfDiffUnion_subset, MeasureTheory.addContent_eq_add_disjointOfDiffUnion_of_subset, empty_notMem_disjointOfDiffUnion, disjoint_disjointOfDiffUnion, sUnion_union_sUnion_disjointOfDiffUnion_of_subset, pairwiseDisjoint_disjointOfDiffUnion
disjointOfUnion πŸ“–CompOp
7 mathmath: empty_notMem_disjointOfUnion, pairwiseDisjoint_disjointOfUnion_of_mem, pairwiseDisjoint_biUnion_disjointOfUnion, disjointOfUnion_subset, sUnion_disjointOfUnion, pairwiseDisjoint_disjointOfUnion, disjointOfUnion_subset_of_mem

Theorems

NameKindAssumesProvesValidatesDepends On
Ioc πŸ“–mathematicalβ€”MeasureTheory.IsSetSemiring
setOf
Set
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioc
β€”le_rfl
Set.Ioc_eq_empty
Set.Ioc_inter_Ioc
le_or_gt
Set.ext
Finset.coe_singleton
Set.sUnion_singleton
Finset.coe_insert
Set.sUnion_insert
diff_eq_sUnion' πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instSDiff
Set.sUnion
β€”β€”
diff_mem_supClosure πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
Set.instSDiff
β€”mem_supClosure_iff
exists_finpartition_diff
diff_sUnion_eq_sUnion_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.instSDiff
Set.sUnion
disjointOfDiffUnion
β€”exists_disjoint_finset_diff_eq
Finset.coe_sdiff
Finset.coe_singleton
Set.sUnion_diff_singleton_empty
disjointOfDiffUnion_subset πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiffUnionβ€”exists_disjoint_finset_diff_eq
Finset.coe_sdiff
Finset.coe_singleton
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_insert
disjointOfUnion_props πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
Finset.partialOrder
Finset.instOrderBot
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.iUnion
Finset.instMembership
Set.sUnion
Set.instEmptyCollection
β€”Finset.cons_induction
Finset.coe_empty
instIsEmptyFalse
Set.iUnion_congr_Prop
Set.iUnion_of_empty
Set.iUnion_empty
Set.sUnion_empty
Set.insert_subset_iff
Finset.coe_insert
Finset.cons_eq_insert
Set.sUnion_insert
Set.iUnionβ‚‚_congr
Set.Pairwise.insert
Function.onFun.eq_1
disjoint_of_sSup_disjoint_of_le_of_le
subset_of_diffUnion_disjointOfDiffUnion
Set.sUnion_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_sUnion_of_mem
Set.disjoint_sdiff_left
empty_notMem_disjointOfDiffUnion
Finset.disjoint_iff_inter_eq_empty
Set.disjoint_iff_inter_eq_empty
Disjoint.symm
disjointOfDiffUnion_subset
Set.iUnion_iUnion_eq_or_left
Set.pairwiseDisjoint_union
pairwiseDisjoint_disjointOfDiffUnion
Set.disjoint_of_subset
subset_trans
subset_of_mem_disjointOfDiffUnion
Set.sUnion_union
diff_sUnion_eq_sUnion_disjointOfDiffUnion
Set.diff_union_self
disjointOfUnion_subset πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
disjointOfUnionβ€”disjointOfUnion_props
disjointOfUnion_subset_of_mem πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
Set.sUnion
disjointOfUnion
β€”disjointOfUnion_props
disjoint_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Disjoint
Finset.partialOrder
Finset.instOrderBot
disjointOfDiffUnion
β€”Finset.not_disjoint_iff
disjoint_sUnion_disjointOfDiffUnion
Set.subset_sUnion_of_mem
empty_notMem_disjointOfDiffUnion
disjoint_sUnion_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.sUnion
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
β€”sUnion_disjointOfDiff
Set.disjoint_sdiff_right
disjoint_sUnion_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.sUnion
disjointOfDiffUnion
β€”diff_sUnion_eq_sUnion_disjointOfDiffUnion
Set.disjoint_sdiff_right
empty_mem πŸ“–mathematicalMeasureTheory.IsSetSemiringSet
Set.instMembership
Set.instEmptyCollection
β€”β€”
empty_notMem_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Finset
Finset.instMembership
disjointOfDiff
Set.instEmptyCollection
β€”diff_eq_sUnion'
empty_notMem_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
disjointOfDiffUnion
Set.instEmptyCollection
β€”exists_disjoint_finset_diff_eq
empty_notMem_disjointOfUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
disjointOfUnion
Set.instEmptyCollection
β€”disjointOfUnion_props
exists_disjoint_finset_diff_eq πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instSDiff
Set.sUnion
β€”Finset.induction
Finset.coe_empty
Set.sUnion_empty
Set.diff_empty
Finset.singleton_subset_set_iff
Finset.coe_singleton
Set.sUnion_singleton
Finset.coe_insert
Set.mem_insert
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_insert
subset_disjointOfDiff
pairwiseDisjoint_disjointOfDiff
sUnion_disjointOfDiff
Set.disjoint_of_subset
Set.diff_subset
Subtype.prop
Finset.coe_biUnion
Set.iUnion_congr_Prop
Set.iUnion_true
Set.PairwiseDisjoint.biUnion
iSup_congr_Prop
Set.PairwiseDisjoint.elim
Set.sUnion_eq_biUnion
Set.sUnion_insert
Set.union_comm
Set.diff_diff
Set.iUnion_diff
Set.iUnion_exists
Set.iUnion_comm
Set.iUnion_congr
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
exists_finpartition_diff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finpartition.parts
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instSDiff
β€”diff_eq_sUnion'
Finset.supIndep_iff_pairwiseDisjoint
Finset.sup_id_eq_sSup
Set.sSup_eq_sUnion
Finpartition.ofErase_parts
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
Finset.erase_subset
subset_refl
Set.instReflSubset
inter_mem πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instInterβ€”β€”
isPiSystem πŸ“–mathematicalMeasureTheory.IsSetSemiringIsPiSystemβ€”inter_mem
isSetRing_supClosure πŸ“–mathematicalMeasureTheory.IsSetSemiringMeasureTheory.IsSetRing
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”subset_supClosure
empty_mem
supClosed_supClosure
Finset.sup'_eq_sup
Finset.induction
Finset.sup_empty
Set.diff_empty
Finset.sup_insert
Set.sup_eq_union
Set.insert_subset_iff
Finset.coe_insert
Finset.sup_sdiff_right
SupClosed.finsetSup_mem
diff_mem_supClosure
mem_supClosure_iff πŸ“–mathematicalMeasureTheory.IsSetSemiringSet
Set.instMembership
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finpartition.parts
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Finset.sup'_eq_sup
Finset.induction
Finset.sup_empty
Set.insert_subset_iff
Finset.coe_insert
Finset.sup_insert
sup_comm
eq_or_ne
sup_bot_eq
DistribLattice.instIsModularLattice
Set.disjoint_sdiff_left
sdiff_sup_self
Finpartition.extend_parts
Finpartition.bind_parts
Finset.coe_biUnion
Set.iUnionβ‚‚_subset_iff
exists_finpartition_diff
Finpartition.sup_parts
Finset.sup_id_set_eq_sUnion
SupClosed.sSup_mem
supClosed_supClosure
Finset.finite_toSet
subset_supClosure
empty_mem
HasSubset.Subset.trans
Set.instIsTransSubset
notMem_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Finset
Finset.instMembership
disjointOfDiff
β€”sUnion_disjointOfDiff
Set.subset_sUnion_of_mem
disjoint_sdiff_self_right
empty_notMem_disjointOfDiff
le_rfl
pairwiseDisjoint_biUnion_disjointOfUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.iUnion
Finset.instMembership
disjointOfUnion
β€”disjointOfUnion_props
pairwiseDisjoint_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
β€”diff_eq_sUnion'
Finset.coe_sdiff
Finset.coe_singleton
Set.PairwiseDisjoint.subset
Set.diff_subset
pairwiseDisjoint_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
disjointOfDiffUnion
β€”exists_disjoint_finset_diff_eq
Finset.coe_sdiff
Finset.coe_singleton
Set.PairwiseDisjoint.subset
Set.diff_subset
pairwiseDisjoint_disjointOfUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
Finset.partialOrder
Finset.instOrderBot
disjointOfUnion
β€”disjointOfUnion_props
pairwiseDisjoint_disjointOfUnion_of_mem πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
disjointOfUnion
β€”Set.PairwiseDisjoint.subset
pairwiseDisjoint_biUnion_disjointOfUnion
Set.subset_iUnionβ‚‚_of_subset
pairwiseDisjoint_insert_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instInsert
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
β€”pairwiseDisjoint_disjointOfDiff
Set.PairwiseDisjoint.insert_of_notMem
notMem_disjointOfDiff
Disjoint.mono_right
Set.subset_sUnion_of_mem
disjoint_sUnion_disjointOfDiff
pairwiseDisjoint_union_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instUnion
disjointOfDiffUnion
β€”Set.pairwiseDisjoint_union
pairwiseDisjoint_disjointOfDiffUnion
Set.disjoint_of_subset
Set.subset_sUnion_of_mem
disjoint_sUnion_disjointOfDiffUnion
sUnion_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.sUnion
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
Set.instSDiff
β€”diff_eq_sUnion'
Finset.coe_sdiff
Finset.coe_singleton
Set.sUnion_diff_singleton_empty
sUnion_disjointOfDiffUnion_subset πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.sUnion
disjointOfDiffUnion
β€”diff_sUnion_eq_sUnion_disjointOfDiffUnion
Set.diff_subset
sUnion_disjointOfUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.sUnion
Set.iUnion
Finset.instMembership
disjointOfUnion
β€”disjointOfUnion_props
sUnion_insert_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
Set.sUnion
Set.instInsert
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
β€”Set.union_diff_cancel
sUnion_disjointOfDiff
Set.sUnion_insert
sUnion_union_disjointOfDiffUnion_of_subset πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.sUnion
Finset.instUnion
disjointOfDiffUnion
β€”sUnion_union_sUnion_disjointOfDiffUnion_of_subset
Finset.coe_union
Set.sUnion_union
sUnion_union_sUnion_disjointOfDiffUnion_of_subset πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.instUnion
Set.sUnion
disjointOfDiffUnion
β€”Set.union_diff_cancel
Set.sUnion_subset
diff_sUnion_eq_sUnion_disjointOfDiffUnion
subset_disjointOfDiff πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiff
β€”diff_eq_sUnion'
Finset.coe_sdiff
Finset.coe_singleton
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_insert
subset_of_diffUnion_disjointOfDiffUnion πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiffUnion
Set.instSDiff
Set.sUnion
β€”Set.sUnion_subset_iff
diff_sUnion_eq_sUnion_disjointOfDiffUnion
subset_refl
Set.instReflSubset
subset_of_mem_disjointOfDiffUnion πŸ“–β€”MeasureTheory.IsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
disjointOfDiffUnion
β€”β€”le_trans
subset_of_diffUnion_disjointOfDiffUnion
sdiff_le
subset_of_mem_disjointOfUnion πŸ“–β€”MeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.instMembership
disjointOfUnion
β€”β€”Set.sUnion_subset_iff
disjointOfUnion_subset_of_mem

(root)

Definitions

NameCategoryTheorems
SetSemiring πŸ“–CompOp
30 mathmath: SetSemiring.instIsOrderedRing, Set.up_union, SetSemiring.mulRightMono, SetSemiring.up_lt_up, SetSemiring.imageHom_def, SetSemiring.down_one, SetSemiring.down_mul, SetSemiring.zero_def, SetSemiring.mulLeftMono, SetSemiring.instCanonicallyOrderedAdd, Set.up_mul, SetSemiring.add_def, Set.up_empty, SetSemiring.one_def, Submodule.singleton_smul, Set.up_image, SetSemiring.down_imageHom, SetSemiring.up_le_up, SetSemiring.down_add, SetSemiring.down_ssubset_down, Set.up_one, SetSemiring.down_subset_down, Submodule.setSemiring_smul_def, SetSemiring.down_up, Submodule.span.ringHom_apply, SetSemiring.mul_def, SetSemiring.instNoZeroDivisors, SetSemiring.down_zero, SetSemiring.up_down, SetSemiring.addLeftMono

---

← Back to Index