Documentation Verification Report

PartialEquiv

πŸ“ Source: Mathlib/ModelTheory/PartialEquiv.lean

Statistics

MetricCount
DefinitionspartialEquivLimit, toPartialEquiv, FGEquiv, IsExtensionPair, definedAtLeft, definedAtRight, PartialEquiv, cod, codRestrict, dom, domRestrict, instInhabited_self, instLE, instPartialOrder, toEmbedding, toEmbeddingOfEqTop, toEquiv, toEquivOfEqTop, inhabited_FGEquiv_of_IsEmpty_Constants_and_Relations, inhabited_self_FGEquiv, Β«term_β‰ƒβ‚š[_]_Β», PartialEquiv
22
Theoremscod_partialEquivLimit, dom_partialEquivLimit, instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, le_partialEquivLimit, partialEquivLimit_comp_inclusion, toEmbedding_toPartialEquiv, toPartialEquiv_injective, toPartialEquiv_toEmbedding, symm_coe, cod, codRestrict_le, cod_le_cod, domRestrict_le, dom_fg_iff_cod_fg, dom_le_dom, ext, ext_iff, le_codRestrict, le_def, le_domRestrict, le_iff, le_trans, monotone_cod, monotone_dom, monotone_symm, subtype_toEquiv_inclusion, symm_apply, symm_bijective, symm_le_iff, symm_le_symm, symm_symm, toEmbeddingOfEqTop_apply, toEmbedding_apply, toEquivOfEqTop_toEmbedding, toEquiv_inclusion, toEquiv_inclusion_apply, countable_self_fgequiv_of_countable, embedding_from_cg, equiv_between_cg, isExtensionPair_iff_cod, isExtensionPair_iff_exists_embedding_closure_singleton_sup
42
Total64

FirstOrder

Definitions

NameCategoryTheorems
Β«term_β‰ƒβ‚š[_]_Β» πŸ“–CompOpβ€”

FirstOrder.Language

Definitions

NameCategoryTheorems
FGEquiv πŸ“–CompOp
3 mathmath: IsExtensionPair.cod, isExtensionPair_iff_cod, countable_self_fgequiv_of_countable
IsExtensionPair πŸ“–MathDef
5 mathmath: dlo_isExtensionPair, isExtensionPair_iff_cod, isExtensionPair_iff_exists_embedding_closure_singleton_sup, IsFraisseLimit.isExtensionPair, isUltrahomogeneous_iff_IsExtensionPair
PartialEquiv πŸ“–CompData
21 mathmath: IsExtensionPair.cod, PartialEquiv.monotone_symm, PartialEquiv.codRestrict_le, embedding_from_cg, DirectLimit.partialEquivLimit_comp_inclusion, PartialEquiv.domRestrict_le, PartialEquiv.le_iff, Embedding.toPartialEquiv_injective, PartialEquiv.symm_bijective, isExtensionPair_iff_cod, PartialEquiv.symm_le_iff, PartialEquiv.monotone_cod, PartialEquiv.le_def, equiv_between_cg, DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, PartialEquiv.monotone_dom, DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, FGEquiv.symm_coe, DirectLimit.cod_partialEquivLimit, DirectLimit.le_partialEquivLimit, DirectLimit.dom_partialEquivLimit
inhabited_FGEquiv_of_IsEmpty_Constants_and_Relations πŸ“–CompOpβ€”
inhabited_self_FGEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
countable_self_fgequiv_of_countable πŸ“–mathematicalβ€”Countable
FGEquiv
β€”Subtype.prop
PartialEquiv.ext
Substructure.fg_iff_structure_fg
Function.Embedding.countable
instCountableSigma
Substructure.instCountable_fg_substructures_of_countable
Structure.FG.instCountable_hom
embedding_from_cg πŸ“–mathematicalIsExtensionPairPartialEquiv
PartialEquiv.instLE
Substructure.FG
PartialEquiv.dom
Embedding.toPartialEquiv
β€”Monotone.comp
Subtype.mono_coe
Order.sequenceOfCofinals.monotone
SemilatticeSup.instIsDirectedOrder
Order.sequenceOfCofinals.encode_mem
PartialEquiv.dom_le_dom
DirectLimit.le_partialEquivLimit
top_le_iff
Substructure.closure_le
Embedding.toPartialEquiv_toEmbedding
equiv_between_cg πŸ“–mathematicalIsExtensionPairPartialEquiv
PartialEquiv.instLE
Substructure.FG
PartialEquiv.dom
Embedding.toPartialEquiv
Equiv.toEmbedding
β€”Monotone.comp
Subtype.mono_coe
Order.sequenceOfCofinals.monotone
SemilatticeSup.instIsDirectedOrder
Order.sequenceOfCofinals.encode_mem
PartialEquiv.dom_le_dom
DirectLimit.le_partialEquivLimit
PartialEquiv.cod_le_cod
top_le_iff
Substructure.closure_le
PartialEquiv.toEquivOfEqTop_toEmbedding
Embedding.toPartialEquiv_toEmbedding
isExtensionPair_iff_cod πŸ“–mathematicalβ€”IsExtensionPair
Substructure
SetLike.instMembership
Substructure.instSetLike
PartialEquiv.cod
PartialEquiv
Substructure.FG
PartialEquiv.dom
FGEquiv
PartialEquiv.instLE
β€”PartialEquiv.monotone_symm
isExtensionPair_iff_exists_embedding_closure_singleton_sup πŸ“–mathematicalβ€”IsExtensionPair
Embedding.comp
Substructure
SetLike.instMembership
Substructure.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Substructure.instCompleteLattice
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Substructure.instPartialOrder
SetLike.coe
Substructure.closure
Set.instSingletonSet
Substructure.inducedStructure
Substructure.inclusion
le_sup_right
β€”le_sup_right
Embedding.ext
Embedding.subtype_equivRange
Substructure.FG.sup
Substructure.fg_closure_singleton
HasSubset.Subset.trans
Set.instIsTransSubset
Substructure.subset_closure
le_sup_left
Set.mem_singleton
PartialEquiv.toEmbedding.eq_1

FirstOrder.Language.DirectLimit

Definitions

NameCategoryTheorems
partialEquivLimit πŸ“–CompOp
4 mathmath: partialEquivLimit_comp_inclusion, cod_partialEquivLimit, le_partialEquivLimit, dom_partialEquivLimit

Theorems

NameKindAssumesProvesValidatesDepends On
cod_partialEquivLimit πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv.cod
partialEquivLimit
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
DFunLike.coe
OrderHom
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
β€”β€”
dom_partialEquivLimit πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv.dom
partialEquivLimit
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
DFunLike.coe
OrderHom
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
β€”β€”
instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion πŸ“–mathematicalβ€”DirectedSystem
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.PartialEquiv.cod
DFunLike.coe
OrderHom
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.inclusion
FirstOrder.Language.PartialEquiv.cod_le_cod
OrderHom.monotone
β€”FirstOrder.Language.PartialEquiv.cod_le_cod
OrderHom.monotone
le_rfl
instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion πŸ“–mathematicalβ€”DirectedSystem
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.PartialEquiv.dom
DFunLike.coe
OrderHom
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.inclusion
FirstOrder.Language.PartialEquiv.dom_le_dom
OrderHom.monotone
β€”FirstOrder.Language.PartialEquiv.dom_le_dom
OrderHom.monotone
le_rfl
le_partialEquivLimit πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv
FirstOrder.Language.PartialEquiv.instLE
DFunLike.coe
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
partialEquivLimit
β€”le_iSup
partialEquivLimit_comp_inclusion
partialEquivLimit_comp_inclusion πŸ“–mathematicalβ€”FirstOrder.Language.Embedding.comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.PartialEquiv.dom
DFunLike.coe
OrderHom
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
FirstOrder.Language.PartialEquiv.instPartialOrder
OrderHom.instFunLike
partialEquivLimit
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.PartialEquiv.cod
FirstOrder.Language.Equiv.toEmbedding
FirstOrder.Language.PartialEquiv.toEquiv
FirstOrder.Language.Substructure.inclusion
le_iSup
FirstOrder.Language.Substructure.instCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”le_iSup
instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion
instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
Equiv_isup_symm_inclusion

FirstOrder.Language.Embedding

Definitions

NameCategoryTheorems
toPartialEquiv πŸ“–CompOp
5 mathmath: toPartialEquiv_toEmbedding, FirstOrder.Language.embedding_from_cg, toPartialEquiv_injective, toEmbedding_toPartialEquiv, FirstOrder.Language.equiv_between_cg

Theorems

NameKindAssumesProvesValidatesDepends On
toEmbedding_toPartialEquiv πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop
toPartialEquiv
FirstOrder.Language.Substructure
FirstOrder.Language.PartialEquiv.dom
β€”β€”
toPartialEquiv_injective πŸ“–mathematicalβ€”FirstOrder.Language.Embedding
FirstOrder.Language.PartialEquiv
toPartialEquiv
β€”ext
FirstOrder.Language.PartialEquiv.ext_iff
FirstOrder.Language.Substructure.mem_top
toPartialEquiv_toEmbedding πŸ“–mathematicalFirstOrder.Language.PartialEquiv.dom
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
toPartialEquiv
FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop
β€”FirstOrder.Language.PartialEquiv.ext

FirstOrder.Language.FGEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm_coe πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv
FirstOrder.Language.Substructure.FG
FirstOrder.Language.PartialEquiv.dom
symm
FirstOrder.Language.PartialEquiv.symm
β€”β€”

FirstOrder.Language.IsExtensionPair

Definitions

NameCategoryTheorems
definedAtLeft πŸ“–CompOpβ€”
definedAtRight πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cod πŸ“–mathematicalFirstOrder.Language.IsExtensionPairFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.PartialEquiv.cod
FirstOrder.Language.PartialEquiv
FirstOrder.Language.Substructure.FG
FirstOrder.Language.PartialEquiv.dom
FirstOrder.Language.FGEquiv
FirstOrder.Language.PartialEquiv.instLE
β€”FirstOrder.Language.isExtensionPair_iff_cod

FirstOrder.Language.PartialEquiv

Definitions

NameCategoryTheorems
cod πŸ“–CompOp
17 mathmath: toEmbedding_apply, FirstOrder.Language.IsExtensionPair.cod, dom_fg_iff_cod_fg, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, le_iff, subtype_toEquiv_inclusion, FirstOrder.Language.isExtensionPair_iff_cod, monotone_cod, toEquiv_inclusion_apply, le_def, cod_le_cod, symm_apply, toEmbeddingOfEqTop_apply, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.cod_partialEquivLimit, ext_iff, toEquiv_inclusion
codRestrict πŸ“–CompOp
2 mathmath: codRestrict_le, le_codRestrict
dom πŸ“–CompOp
20 mathmath: toEmbedding_apply, FirstOrder.Language.IsExtensionPair.cod, dom_fg_iff_cod_fg, dom_le_dom, FirstOrder.Language.embedding_from_cg, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, le_iff, FirstOrder.Language.Embedding.toEmbedding_toPartialEquiv, subtype_toEquiv_inclusion, FirstOrder.Language.isExtensionPair_iff_cod, toEquiv_inclusion_apply, le_def, FirstOrder.Language.equiv_between_cg, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, monotone_dom, symm_apply, FirstOrder.Language.FGEquiv.symm_coe, ext_iff, toEquiv_inclusion, FirstOrder.Language.DirectLimit.dom_partialEquivLimit
domRestrict πŸ“–CompOp
2 mathmath: le_domRestrict, domRestrict_le
instInhabited_self πŸ“–CompOpβ€”
instLE πŸ“–CompOp
10 mathmath: FirstOrder.Language.IsExtensionPair.cod, codRestrict_le, FirstOrder.Language.embedding_from_cg, domRestrict_le, le_iff, FirstOrder.Language.isExtensionPair_iff_cod, symm_le_iff, le_def, FirstOrder.Language.equiv_between_cg, FirstOrder.Language.DirectLimit.le_partialEquivLimit
instPartialOrder πŸ“–CompOp
9 mathmath: monotone_symm, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, monotone_cod, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, monotone_dom, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.cod_partialEquivLimit, FirstOrder.Language.DirectLimit.le_partialEquivLimit, FirstOrder.Language.DirectLimit.dom_partialEquivLimit
toEmbedding πŸ“–CompOp
1 mathmath: toEmbedding_apply
toEmbeddingOfEqTop πŸ“–CompOp
4 mathmath: FirstOrder.Language.Embedding.toPartialEquiv_toEmbedding, FirstOrder.Language.Embedding.toEmbedding_toPartialEquiv, toEquivOfEqTop_toEmbedding, toEmbeddingOfEqTop_apply
toEquiv πŸ“–CompOp
10 mathmath: toEmbedding_apply, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, le_iff, subtype_toEquiv_inclusion, toEquiv_inclusion_apply, le_def, symm_apply, toEmbeddingOfEqTop_apply, ext_iff, toEquiv_inclusion
toEquivOfEqTop πŸ“–CompOp
1 mathmath: toEquivOfEqTop_toEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict_le πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
cod
FirstOrder.Language.PartialEquiv
instLE
codRestrict
β€”symm_le_iff
domRestrict_le
cod_le_cod πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
cod
β€”FirstOrder.Language.Equiv.apply_symm_apply
domRestrict_le πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
dom
FirstOrder.Language.PartialEquiv
instLE
domRestrict
β€”β€”
dom_fg_iff_cod_fg πŸ“–mathematicalβ€”FirstOrder.Language.Substructure.FG
dom
cod
β€”FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Equiv.fg_iff
dom_le_dom πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
dom
β€”β€”
ext πŸ“–β€”dom
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
cod
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
β€”β€”le_def
le_rfl
FirstOrder.Language.Embedding.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
cod
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv
dom
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
β€”ext
le_codRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
cod
FirstOrder.Language.PartialEquiv
instLE
codRestrictβ€”symm_le_iff
le_domRestrict
monotone_symm
le_def πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv
instLE
FirstOrder.Language.Embedding.comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
cod
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv.toEmbedding
toEquiv
FirstOrder.Language.Substructure.inclusion
β€”β€”
le_domRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
dom
FirstOrder.Language.PartialEquiv
instLE
domRestrictβ€”dom_le_dom
subtype_toEquiv_inclusion
le_iff πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv
instLE
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
cod
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.inclusion
FirstOrder.Language.Equiv
dom
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
β€”dom_le_dom
cod_le_cod
Function.Embedding.inj'
toEquiv_inclusion_apply
le_def
FirstOrder.Language.Embedding.ext
le_trans πŸ“–β€”FirstOrder.Language.PartialEquiv
instLE
β€”β€”LE.le.trans
FirstOrder.Language.Embedding.comp_assoc
FirstOrder.Language.Embedding.ext
monotone_cod πŸ“–mathematicalβ€”Monotone
FirstOrder.Language.PartialEquiv
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
FirstOrder.Language.Substructure.instPartialOrder
cod
β€”cod_le_cod
monotone_dom πŸ“–mathematicalβ€”Monotone
FirstOrder.Language.PartialEquiv
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
FirstOrder.Language.Substructure.instPartialOrder
dom
β€”dom_le_dom
monotone_symm πŸ“–mathematicalβ€”Monotone
FirstOrder.Language.PartialEquiv
PartialOrder.toPreorder
instPartialOrder
symm
β€”symm_le_symm
subtype_toEquiv_inclusion πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
FirstOrder.Language.Embedding.comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
cod
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv.toEmbedding
toEquiv
FirstOrder.Language.Substructure.inclusion
dom_le_dom
β€”dom_le_dom
symm_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
symm
cod
FirstOrder.Language.Substructure.inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
FirstOrder.Language.Equiv.symm
β€”β€”
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
FirstOrder.Language.PartialEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_le_iff πŸ“–mathematicalβ€”FirstOrder.Language.PartialEquiv
instLE
symm
β€”symm_symm
monotone_symm
symm_le_symm πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
symmβ€”le_iff
cod_le_cod
dom_le_dom
FirstOrder.Language.Equiv.injective
FirstOrder.Language.Equiv.apply_symm_apply
FirstOrder.Language.Equiv.symm_apply_apply
toEquiv_inclusion_apply
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
toEmbeddingOfEqTop_apply πŸ“–mathematicaldom
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
toEmbeddingOfEqTop
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
cod
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure.inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
FirstOrder.Language.Substructure.mem_top
β€”FirstOrder.Language.Substructure.mem_top
toEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.funLike
toEmbedding
cod
FirstOrder.Language.Equiv
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
β€”β€”
toEquivOfEqTop_toEmbedding πŸ“–mathematicaldom
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
cod
FirstOrder.Language.Equiv.toEmbedding
toEquivOfEqTop
toEmbeddingOfEqTop
β€”β€”
toEquiv_inclusion πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
FirstOrder.Language.Embedding.comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
FirstOrder.Language.Substructure.inducedStructure
cod
FirstOrder.Language.Equiv.toEmbedding
toEquiv
FirstOrder.Language.Substructure.inclusion
dom_le_dom
cod_le_cod
β€”dom_le_dom
cod_le_cod
subtype_toEquiv_inclusion
FirstOrder.Language.Embedding.ext
toEquiv_inclusion_apply πŸ“–mathematicalFirstOrder.Language.PartialEquiv
instLE
DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
dom
cod
FirstOrder.Language.Substructure.inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
toEquiv
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Substructure.inclusion
dom_le_dom
cod_le_cod
β€”FirstOrder.Language.Embedding.injective
dom_le_dom
cod_le_cod
subtype_toEquiv_inclusion

(root)

Definitions

NameCategoryTheorems
PartialEquiv πŸ“–CompData
9 mathmath: Pretrivialization.toPartialEquiv_injective, PartialEquiv.symm_trans_self, OpenPartialHomeomorph.toPartialEquiv_injective, ChartedSpaceCore.chart_mem_atlas, PartialEquiv.symm_bijective, Equidecomp.toPartialEquiv_injective, PartialEquiv.eqOnSource_refl, PartialEquiv.self_trans_symm, FiberBundleCore.localTrivAsPartialEquiv_trans

---

← Back to Index