Documentation

Mathlib.ModelTheory.PartialEquiv

Partial Isomorphisms #

This file defines partial isomorphisms between first-order structures.

Main Definitions #

Main Results #

structure FirstOrder.Language.PartialEquiv (L : Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :
Type (max w w')

A partial L-equivalence, implemented as an equivalence between substructures.

  • dom : L.Substructure M

    The substructure which is the domain of the equivalence.

  • cod : L.Substructure N

    The substructure which is the codomain of the equivalence.

  • toEquiv : L.Equiv self.dom self.cod

    The equivalence between the two subdomains.

Instances For

    A partial L-equivalence, implemented as an equivalence between substructures.

    Equations
      Instances For
        def FirstOrder.Language.PartialEquiv.symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :

        Maps to the symmetric partial equivalence.

        Equations
          Instances For
            @[simp]
            theorem FirstOrder.Language.PartialEquiv.symm_symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :
            f.symm.symm = f
            @[simp]
            theorem FirstOrder.Language.PartialEquiv.symm_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) (x : f.cod) :
            instance FirstOrder.Language.PartialEquiv.instLE {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
            Equations
              theorem FirstOrder.Language.PartialEquiv.dom_le_dom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
              f gf.dom g.dom
              theorem FirstOrder.Language.PartialEquiv.cod_le_cod {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
              f gf.cod g.cod
              theorem FirstOrder.Language.PartialEquiv.le_iff {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
              f g ∃ (dom_le_dom : f.dom g.dom) (cod_le_cod : f.cod g.cod), ∀ (x : f.dom), (Substructure.inclusion cod_le_cod) (f.toEquiv x) = g.toEquiv ((Substructure.inclusion dom_le_dom) x)
              theorem FirstOrder.Language.PartialEquiv.le_trans {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g h : L.PartialEquiv M N) :
              f gg hf h
              theorem FirstOrder.Language.PartialEquiv.symm_le_symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (hfg : f g) :
              theorem FirstOrder.Language.PartialEquiv.ext {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (h_dom : f.dom = g.dom) :
              (∀ (x : M) (h : x f.dom), f.cod.subtype (f.toEquiv x, h) = g.cod.subtype (g.toEquiv x, ))f = g
              theorem FirstOrder.Language.PartialEquiv.ext_iff {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
              f = g ∃ (h_dom : f.dom = g.dom), ∀ (x : M) (h : x f.dom), f.cod.subtype (f.toEquiv x, h) = g.cod.subtype (g.toEquiv x, )
              noncomputable def FirstOrder.Language.PartialEquiv.domRestrict {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure M} (h : A f.dom) :

              Restriction of a partial equivalence to a substructure of the domain.

              Equations
                Instances For
                  theorem FirstOrder.Language.PartialEquiv.le_domRestrict {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g : L.PartialEquiv M N) {A : L.Substructure M} (hf : f.dom A) (hg : A g.dom) (hfg : f g) :
                  noncomputable def FirstOrder.Language.PartialEquiv.codRestrict {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure N} (h : A f.cod) :

                  Restriction of a partial equivalence to a substructure of the codomain.

                  Equations
                    Instances For
                      theorem FirstOrder.Language.PartialEquiv.le_codRestrict {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g : L.PartialEquiv M N) {A : L.Substructure N} (hf : f.cod A) (hg : A g.cod) (hfg : f g) :
                      def FirstOrder.Language.PartialEquiv.toEmbedding {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :
                      L.Embedding (↥f.dom) N

                      A partial equivalence as an embedding from its domain.

                      Equations
                        Instances For
                          @[simp]
                          theorem FirstOrder.Language.PartialEquiv.toEmbedding_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (m : f.dom) :
                          f.toEmbedding m = (f.toEquiv m)
                          def FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h : f.dom = ) :
                          L.Embedding M N

                          Given a partial equivalence which has the whole structure as domain, returns the corresponding embedding.

                          Equations
                            Instances For
                              @[simp]
                              theorem FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h : f.dom = ) (m : M) :
                              (toEmbeddingOfEqTop h) m = (f.toEquiv m, )
                              def FirstOrder.Language.PartialEquiv.toEquivOfEqTop {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h_dom : f.dom = ) (h_cod : f.cod = ) :
                              L.Equiv M N

                              Given a partial equivalence which has the whole structure as domain and as codomain, returns the corresponding equivalence.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem FirstOrder.Language.PartialEquiv.toEquivOfEqTop_toEmbedding {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h_dom : f.dom = ) (h_cod : f.cod = ) :
                                  noncomputable def FirstOrder.Language.Embedding.toPartialEquiv {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Embedding M N) :

                                  Given an embedding, returns the corresponding partial equivalence with as domain.

                                  Equations
                                    Instances For
                                      noncomputable def FirstOrder.Language.DirectLimit.partialEquivLimit {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirectedOrder ι] (S : ι →o L.PartialEquiv M N) :

                                      The limit of a directed system of PartialEquivs.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem FirstOrder.Language.DirectLimit.dom_partialEquivLimit {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirectedOrder ι] (S : ι →o L.PartialEquiv M N) :
                                          (partialEquivLimit S).dom = ⨆ (x : ι), (S x).dom
                                          @[simp]
                                          theorem FirstOrder.Language.DirectLimit.cod_partialEquivLimit {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirectedOrder ι] (S : ι →o L.PartialEquiv M N) :
                                          (partialEquivLimit S).cod = ⨆ (x : ι), (S x).cod
                                          @[reducible, inline]
                                          abbrev FirstOrder.Language.FGEquiv (L : Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :
                                          Type (max 0 w w')

                                          The type of equivalences between finitely generated substructures.

                                          Equations
                                            Instances For

                                              Two structures M and N form an extension pair if the domain of any finitely-generated map from M to N can be extended to include any element of M.

                                              Equations
                                                Instances For
                                                  def FirstOrder.Language.FGEquiv.symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.FGEquiv M N) :
                                                  L.FGEquiv N M

                                                  Maps to the symmetric finitely-generated partial equivalence.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem FirstOrder.Language.FGEquiv.symm_coe {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.FGEquiv M N) :
                                                      f.symm = (↑f).symm
                                                      theorem FirstOrder.Language.isExtensionPair_iff_cod {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
                                                      L.IsExtensionPair M N ∀ (f : L.FGEquiv N M) (m : M), ∃ (g : L.FGEquiv N M), m (↑g).cod f g
                                                      theorem FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
                                                      L.IsExtensionPair M N ∀ (S : L.Substructure M), S.FG∀ (f : L.Embedding (↥S) N) (m : M), ∃ (g : L.Embedding (↥((Substructure.closure L).toFun {m}S)) N), f = g.comp (Substructure.inclusion )

                                                      An alternate characterization of an extension pair is that every finitely generated partial isomorphism can be extended to include any particular element of the domain.

                                                      theorem FirstOrder.Language.IsExtensionPair.cod {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
                                                      L.IsExtensionPair M N∀ (f : L.FGEquiv N M) (m : M), ∃ (g : L.FGEquiv N M), m (↑g).cod f g

                                                      Alias of the forward direction of FirstOrder.Language.isExtensionPair_iff_cod.

                                                      The cofinal set of finite equivalences with a given element in their domain.

                                                      Equations
                                                        Instances For

                                                          The cofinal set of finite equivalences with a given element in their codomain.

                                                          Equations
                                                            Instances For
                                                              theorem FirstOrder.Language.embedding_from_cg {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (M_cg : Structure.CG L M) (g : L.FGEquiv M N) (H : L.IsExtensionPair M N) :
                                                              ∃ (f : L.Embedding M N), g f.toPartialEquiv

                                                              For a countably generated structure M and a structure N, if any partial equivalence between finitely generated substructures can be extended to any element in the domain, then there exists an embedding of M in N.

                                                              theorem FirstOrder.Language.equiv_between_cg {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (M_cg : Structure.CG L M) (N_cg : Structure.CG L N) (g : L.FGEquiv M N) (ext_dom : L.IsExtensionPair M N) (ext_cod : L.IsExtensionPair N M) :
                                                              ∃ (f : L.Equiv M N), g f.toEmbedding.toPartialEquiv

                                                              For two countably generated structure M and N, if any PartialEquiv between finitely generated substructures can be extended to any element in the domain and to any element in the codomain, then there exists an equivalence between M and N.