Documentation Verification Report

Moebius

πŸ“ Source: Mathlib/NumberTheory/ArithmeticFunction/Moebius.lean

Statistics

MetricCount
DefinitionstermΞΌ, instInvertibleNatToArithmeticFunctionZeta, moebius, zetaUnit
4
TheoremsprodPrimeFactors_one_add_of_squarefree, prodPrimeFactors_one_sub_of_squarefree, abs_moebius, abs_moebius_eq_one_of_squarefree, abs_moebius_le_one, coe_moebius_mul_coe_zeta, coe_zetaUnit, coe_zeta_mul_coe_moebius, coe_zeta_mul_moebius, inv_zetaUnit, isMultiplicative_moebius, moebius_apply_isPrimePow_not_prime, moebius_apply_of_squarefree, moebius_apply_one, moebius_apply_prime, moebius_apply_prime_pow, moebius_eq_or, moebius_eq_zero_of_not_squarefree, moebius_mul_coe_zeta, moebius_ne_zero_iff_eq_or, moebius_ne_zero_iff_squarefree, moebius_sq, moebius_sq_eq_one_of_squarefree, prod_eq_iff_prod_pow_moebius_eq, prod_eq_iff_prod_pow_moebius_eq_of_nonzero, prod_eq_iff_prod_pow_moebius_eq_on, prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero, sum_eq_iff_sum_mul_moebius_eq, sum_eq_iff_sum_mul_moebius_eq_on, sum_eq_iff_sum_smul_moebius_eq, sum_eq_iff_sum_smul_moebius_eq_on, sum_eq_iff_sum_smul_moebius_eq_on'
32
Total36

ArithmeticFunction

Definitions

NameCategoryTheorems
instInvertibleNatToArithmeticFunctionZeta πŸ“–CompOpβ€”
moebius πŸ“–CompOp
41 mathmath: coe_moebius_mul_coe_zeta, moebius_eq_or, moebius_ne_zero_iff_eq_or, LSeries_zeta_mul_Lseries_moebius, prod_eq_iff_prod_pow_moebius_eq, moebius_sq, moebius_apply_one, not_LSeriesSummable_moebius_at_one, moebius_mul_coe_zeta, moebius_apply_prime_pow, moebius_eq_zero_of_not_squarefree, prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero, moebius_apply_of_squarefree, DirichletCharacter.LSeries.mul_mu_eq_one, moebius_apply_prime, coe_zeta_mul_coe_moebius, sum_eq_iff_sum_smul_moebius_eq, sum_eq_iff_sum_mul_moebius_eq_on, sum_eq_iff_sum_mul_moebius_eq, log_mul_moebius_eq_vonMangoldt, moebius_sq_eq_one_of_squarefree, LSeries_one_mul_Lseries_moebius, moebius_mul_log_eq_vonMangoldt, abs_moebius_eq_one_of_squarefree, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, LSeriesSummable_moebius_iff, sum_moebius_mul_log_eq, isMultiplicative_moebius, prod_eq_iff_prod_pow_moebius_eq_on, inv_zetaUnit, coe_zeta_mul_moebius, DirichletCharacter.convolution_mul_moebius, Nat.moebius_eq, abs_moebius_le_one, sum_eq_iff_sum_smul_moebius_eq_on', prod_eq_iff_prod_pow_moebius_eq_of_nonzero, IsMultiplicative.prodPrimeFactors_one_sub_of_squarefree, sum_eq_iff_sum_smul_moebius_eq_on, moebius_apply_isPrimePow_not_prime, abscissaOfAbsConv_moebius, abs_moebius
zetaUnit πŸ“–CompOp
2 mathmath: inv_zetaUnit, coe_zetaUnit

Theorems

NameKindAssumesProvesValidatesDepends On
abs_moebius πŸ“–mathematicalβ€”abs
instLatticeInt
Int.instAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
Squarefree
Nat.instMonoid
Nat.instDecidablePredSquarefree
β€”abs_moebius_eq_one_of_squarefree
moebius_eq_zero_of_not_squarefree
abs_zero
Int.instAddLeftMono
abs_moebius_eq_one_of_squarefree πŸ“–mathematicalSquarefree
Nat.instMonoid
abs
instLatticeInt
Int.instAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”moebius_apply_of_squarefree
abs_pow
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
abs_neg
abs_one
one_pow
abs_moebius_le_one πŸ“–mathematicalβ€”abs
instLatticeInt
Int.instAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”abs_moebius
Int.instZeroLEOneClass
coe_moebius_mul_coe_zeta πŸ“–mathematicalβ€”ArithmeticFunction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
instMul
Ring.toSemiring
ofInt
moebius
natToArithmeticFunction
zeta
one
AddMonoidWithOne.toOne
β€”coe_coe
intCoe_mul
moebius_mul_coe_zeta
intCoe_one
coe_zetaUnit πŸ“–mathematicalβ€”Units.val
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instMonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
zetaUnit
natToArithmeticFunction
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
zeta
β€”β€”
coe_zeta_mul_coe_moebius πŸ“–mathematicalβ€”ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
instMul
Ring.toSemiring
natToArithmeticFunction
zeta
ofInt
moebius
one
AddMonoidWithOne.toOne
β€”coe_coe
intCoe_mul
coe_zeta_mul_moebius
intCoe_one
coe_zeta_mul_moebius πŸ“–mathematicalβ€”ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instMul
Int.instSemiring
natToArithmeticFunction
zeta
moebius
one
AddMonoidWithOne.toOne
β€”mul_comm
moebius_mul_coe_zeta
inv_zetaUnit πŸ“–mathematicalβ€”Units.val
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instMonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
zetaUnit
ofInt
Ring.toAddGroupWithOne
CommRing.toRing
moebius
β€”β€”
isMultiplicative_moebius πŸ“–mathematicalβ€”IsMultiplicative
Semiring.toMonoidWithZero
Int.instSemiring
moebius
β€”IsMultiplicative.iff_ne_zero
moebius_apply_of_squarefree
Unique.instSubsingleton
cardFactors_one
pow_zero
Nat.squarefree_mul
cardFactors_mul
pow_add
ite_zero_mul_ite_zero
moebius_apply_isPrimePow_not_prime πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.Prime
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”isPrimePow_nat_iff
moebius_apply_prime_pow
LT.lt.ne'
pow_one
moebius_apply_of_squarefree πŸ“–mathematicalSquarefree
Nat.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
Monoid.toNatPow
Int.instMonoid
Nat.instMulZeroClass
cardFactors
β€”β€”
moebius_apply_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”moebius_apply_of_squarefree
Unique.instSubsingleton
cardFactors_one
pow_zero
moebius_apply_prime πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”moebius_apply_of_squarefree
Irreducible.squarefree
cardFactors_apply_prime
pow_one
moebius_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
Monoid.toNatPow
Nat.instMonoid
β€”pow_one
moebius_apply_prime
moebius_eq_zero_of_not_squarefree
Nat.squarefree_pow_iff
Nat.Prime.ne_one
not_and_or
moebius_eq_or πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”neg_one_pow_eq_or
moebius_eq_zero_of_not_squarefree πŸ“–mathematicalSquarefree
Nat.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”β€”
moebius_mul_coe_zeta πŸ“–mathematicalβ€”ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instMul
Int.instSemiring
moebius
natToArithmeticFunction
zeta
one
AddMonoidWithOne.toOne
β€”ext
coe_mul_zeta_apply
Nat.sum_divisors_prime_pow
Finset.sum_range_succ'
Finset.sum_congr
moebius_apply_prime_pow
Finset.sum_ite_eq'
pow_zero
moebius_apply_of_squarefree
Unique.instSubsingleton
cardFactors_one
neg_add_cancel
one_apply_ne
Nat.instIsMulTorsionFree
Nat.Prime.ne_one
LT.lt.ne'
map_zero
Nat.divisorsAntidiagonal_one
Nat.cast_ite
Nat.cast_zero
Nat.cast_one
mul_ite
MulZeroClass.mul_zero
mul_one
Finset.sum_singleton
IsMultiplicative.map_mul_of_coprime
IsMultiplicative.mul
isMultiplicative_moebius
IsMultiplicative.natCast
isMultiplicative_zeta
isMultiplicative_one
moebius_ne_zero_iff_eq_or πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”moebius_eq_or
moebius_ne_zero_iff_squarefree πŸ“–mathematicalβ€”Squarefree
Nat.instMonoid
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
moebius_eq_zero_of_not_squarefree
moebius_apply_of_squarefree
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.instNontrivial
moebius_sq πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
Squarefree
Nat.instMonoid
Nat.instDecidablePredSquarefree
β€”moebius_sq_eq_one_of_squarefree
moebius_eq_zero_of_not_squarefree
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
moebius_sq_eq_one_of_squarefree πŸ“–mathematicalSquarefree
Nat.instMonoid
Monoid.toNatPow
Int.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”moebius_apply_of_squarefree
pow_mul
mul_comm
neg_one_sq
one_pow
prod_eq_iff_prod_pow_moebius_eq πŸ“–mathematicalβ€”Finset.prod
CommGroup.toCommMonoid
Nat.divisors
Nat.divisorsAntidiagonal
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”sum_eq_iff_sum_smul_moebius_eq
prod_eq_iff_prod_pow_moebius_eq_of_nonzero πŸ“–mathematicalβ€”Finset.prod
CommMonoidWithZero.toCommMonoid
CommGroupWithZero.toCommMonoidWithZero
Nat.divisors
Nat.divisorsAntidiagonal
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”Units.coeHom_apply
map_prod
MonoidHom.instMonoidHomClass
Units.val_mk0
Finset.prod_congr
Nat.pos_of_mem_divisors
prod_eq_iff_prod_pow_moebius_eq
Nat.snd_mem_divisors_of_mem_antidiagonal
Units.val_zpow_eq_zpow_val
prod_eq_iff_prod_pow_moebius_eq_on πŸ“–mathematicalSet
Set.instMembership
Finset.prod
CommGroup.toCommMonoid
Nat.divisors
Nat.divisorsAntidiagonal
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”sum_eq_iff_sum_smul_moebius_eq_on
prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero πŸ“–mathematicalSet
Set.instMembership
Finset.prod
CommMonoidWithZero.toCommMonoid
CommGroupWithZero.toCommMonoidWithZero
Nat.divisors
Nat.divisorsAntidiagonal
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”Units.coeHom_apply
map_prod
MonoidHom.instMonoidHomClass
Units.val_mk0
Finset.prod_congr
Nat.pos_of_mem_divisors
prod_eq_iff_prod_pow_moebius_eq_on
Nat.snd_mem_divisors_of_mem_antidiagonal
Units.val_zpow_eq_zpow_val
sum_eq_iff_sum_mul_moebius_eq πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Nat.divisors
Nat.divisorsAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”sum_eq_iff_sum_smul_moebius_eq
Finset.sum_congr
zsmul_eq_mul
sum_eq_iff_sum_mul_moebius_eq_on πŸ“–mathematicalSet
Set.instMembership
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Nat.divisors
Nat.divisorsAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”sum_eq_iff_sum_smul_moebius_eq_on
Finset.sum_congr
zsmul_eq_mul
sum_eq_iff_sum_smul_moebius_eq πŸ“–mathematicalβ€”Finset.sum
AddCommGroup.toAddCommMonoid
Nat.divisors
Nat.divisorsAntidiagonal
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”ext_iff
Finset.sum_congr
Nat.divisors_zero
instIsEmptyFalse
map_zero
coe_zeta_smul_apply
LT.lt.ne'
Nat.pos_of_mem_divisors
moebius_mul_coe_zeta
one_smul
coe_zeta_mul_moebius
Nat.divisorsAntidiagonal_zero
Nat.snd_mem_divisors_of_mem_antidiagonal
sum_eq_iff_sum_smul_moebius_eq_on πŸ“–mathematicalSet
Set.instMembership
Finset.sum
AddCommGroup.toAddCommMonoid
Nat.divisors
Nat.divisorsAntidiagonal
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”Nat.sum_divisorsAntidiagonal'
sum_eq_iff_sum_smul_moebius_eq
Finset.sum_congr
Nat.pos_of_mem_divisors
Nat.dvd_of_mem_divisors
sum_eq_iff_sum_smul_moebius_eq_on' πŸ“–mathematicalSet
Set.instMembership
Finset.sum
AddCommGroup.toAddCommMonoid
Nat.divisors
Nat.divisorsAntidiagonal
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instFunLikeNat
moebius
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
sum_eq_iff_sum_smul_moebius_eq_on

ArithmeticFunction.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
prodPrimeFactors_one_add_of_squarefree πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Squarefree
Nat.instMonoid
Finset.prod
CommSemiring.toCommMonoid
Nat.primeFactors
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ArithmeticFunction.instFunLikeNat
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Nat.divisors
β€”ArithmeticFunction.prodPrimeFactors_apply
Squarefree.ne_zero
Nat.instNontrivial
Finset.prod_congr
ArithmeticFunction.zeta_apply_ne
Nat.Prime.ne_zero
Nat.prime_of_mem_primeFactorsList
List.mem_toFinset
Nat.cast_one
prodPrimeFactors_add_of_squarefree
natCast
ArithmeticFunction.isMultiplicative_zeta
ArithmeticFunction.coe_zeta_mul_apply
prodPrimeFactors_one_sub_of_squarefree πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Squarefree
Nat.instMonoid
Finset.prod
CommRing.toCommMonoid
Nat.primeFactors
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ArithmeticFunction.instFunLikeNat
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Nat.divisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Int.instCommRing
ArithmeticFunction.moebius
β€”Finset.prod_congr
ArithmeticFunction.pmul_apply
ArithmeticFunction.intCoe_apply
ArithmeticFunction.moebius_apply_prime
Nat.prime_of_mem_primeFactorsList
List.mem_toFinset
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_neg
Mathlib.Meta.NormNum.isintCast
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
prodPrimeFactors_one_add_of_squarefree
pmul
intCast
ArithmeticFunction.isMultiplicative_moebius
Finset.sum_congr

ArithmeticFunction.Moebius

Definitions

NameCategoryTheorems
termΞΌ πŸ“–CompOpβ€”

---

← Back to Index