Documentation

Mathlib.NumberTheory.ArithmeticFunction.Moebius

The Möbius function and Möbius inversion #

Main Definitions #

Main Results #

Tags #

arithmetic functions, dirichlet convolution, divisors

μ is the Möbius function. If n is squarefree with an even number of distinct prime factors, μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1. If n is not squarefree, μ n = 0.

Equations
    Instances For

      μ is the Möbius function. If n is squarefree with an even number of distinct prime factors, μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1. If n is not squarefree, μ n = 0.

      Equations
        Instances For
          theorem ArithmeticFunction.moebius_apply_prime_pow {p k : } (hp : Nat.Prime p) (hk : k 0) :
          moebius (p ^ k) = if k = 1 then -1 else 0

          A unit in ArithmeticFunction R that evaluates to ζ, with inverse μ.

          Equations
            Instances For
              theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq {R : Type u_1} [AddCommGroup R] {f g : R} :
              (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, moebius x.1 g x.2 = f n

              Möbius inversion for functions to an AddCommGroup.

              theorem ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq {R : Type u_1} [NonAssocRing R] {f g : R} :
              (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, (moebius x.1) * g x.2 = f n

              Möbius inversion for functions to a Ring.

              theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq {R : Type u_1} [CommGroup R] {f g : R} :
              (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

              Möbius inversion for functions to a CommGroup.

              theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero {R : Type u_1} [CommGroupWithZero R] {f g : R} (hf : ∀ (n : ), 0 < nf n 0) (hg : ∀ (n : ), 0 < ng n 0) :
              (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

              Möbius inversion for functions to a CommGroupWithZero.

              theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on {R : Type u_1} [AddCommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
              (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, moebius x.1 g x.2 = f n

              Möbius inversion for functions to an AddCommGroup, where the equalities only hold on a well-behaved set.

              theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on' {R : Type u_1} [AddCommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) (hs₀ : 0s) :
              (∀ ns, in.divisors, f i = g n) ns, xn.divisorsAntidiagonal, moebius x.1 g x.2 = f n
              theorem ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq_on {R : Type u_1} [NonAssocRing R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
              (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, (moebius x.1) * g x.2 = f n

              Möbius inversion for functions to a Ring, where the equalities only hold on a well-behaved set.

              theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on {R : Type u_1} [CommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
              (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

              Möbius inversion for functions to a CommGroup, where the equalities only hold on a well-behaved set.

              theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero {R : Type u_1} [CommGroupWithZero R] (s : Set ) (hs : ∀ (m n : ), m nn sm s) {f g : R} (hf : n > 0, f n 0) (hg : n > 0, g n 0) :
              (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

              Möbius inversion for functions to a CommGroupWithZero, where the equalities only hold on a well-behaved set.