Documentation

Mathlib.NumberTheory.ArithmeticFunction.Zeta

The arithmetic function ζ #

We define ζ to be the arithmetic function with ζ n = 1 for 0 < n (whose Dirichlet series is the Riemann zeta function).

Main Definitions #

Tags #

arithmetic functions, dirichlet convolution, divisors

ζ 0 = 0, otherwise ζ x = 1. The Dirichlet Series is the Riemann ζ.

Equations
    Instances For

      ζ 0 = 0, otherwise ζ x = 1. The Dirichlet Series is the Riemann ζ.

      Equations
        Instances For
          theorem ArithmeticFunction.coe_zeta_smul_apply {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [MulAction R M] {f : ArithmeticFunction M} {x : } :
          (zeta f) x = ix.divisors, f i
          @[simp]
          theorem ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [MulAction R M] {f : ArithmeticFunction M} {x : } :
          (∑ xx.divisorsAntidiagonal, if x.1 = 0 then 0 f x.2 else f x.2) = ix.divisors, f i

          @[simp]-normal form of coe_zeta_smul_apply.

          theorem ArithmeticFunction.coe_zeta_mul_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {x : } :
          (zeta * f) x = ix.divisors, f i
          theorem ArithmeticFunction.coe_mul_zeta_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {x : } :
          (f * zeta) x = ix.divisors, f i

          This is the pointwise product of ArithmeticFunctions.

          Equations
            Instances For
              @[simp]
              theorem ArithmeticFunction.pmul_apply {R : Type u_1} [MulZeroClass R] {f g : ArithmeticFunction R} {x : } :
              (f.pmul g) x = f x * g x
              theorem ArithmeticFunction.pmul_assoc {R : Type u_1} [SemigroupWithZero R] (f₁ f₂ f₃ : ArithmeticFunction R) :
              (f₁.pmul f₂).pmul f₃ = f₁.pmul (f₂.pmul f₃)

              This is the pointwise power of ArithmeticFunctions.

              Equations
                Instances For
                  @[simp]
                  theorem ArithmeticFunction.ppow_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k x : } (kpos : 0 < k) :
                  (f.ppow k) x = f x ^ k
                  theorem ArithmeticFunction.ppow_succ' {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k : } :
                  f.ppow (k + 1) = f.pmul (f.ppow k)
                  theorem ArithmeticFunction.ppow_succ {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k : } {kpos : 0 < k} :
                  f.ppow (k + 1) = (f.ppow k).pmul f

                  This is the pointwise division of ArithmeticFunctions.

                  Equations
                    Instances For
                      @[simp]
                      theorem ArithmeticFunction.pdiv_apply {R : Type u_1} [GroupWithZero R] (f g : ArithmeticFunction R) (n : ) :
                      (f.pdiv g) n = f n / g n
                      @[simp]

                      This result only holds for DivisionSemirings instead of GroupWithZeros because zeta takes values in ℕ, and hence the coercion requires an AddMonoidWithOne. TODO: Generalise zeta