Documentation Verification Report

Zeta

πŸ“ Source: Mathlib/NumberTheory/ArithmeticFunction/Zeta.lean

Statistics

MetricCount
Definitionspdiv, pmul, ppow, zeta, termΞΆ, evalArithmeticFunctionZeta
6
Theoremspdiv, pmul, ppow, coe_mul_zeta_apply, coe_zeta_mul_apply, coe_zeta_mul_comm, coe_zeta_smul_apply, isMultiplicative_zeta, mul_zeta_apply, pdiv_apply, pdiv_zeta, pmul_apply, pmul_assoc, pmul_comm, pmul_zeta, ppow_apply, ppow_one, ppow_succ, ppow_succ', ppow_zero, sum_divisorsAntidiagonal_eq_sum_divisors, zeta_apply, zeta_apply_ne, zeta_eq_zero, zeta_mul_apply, zeta_mul_comm, zeta_pmul, zeta_pos
28
Total34

ArithmeticFunction

Definitions

NameCategoryTheorems
pdiv πŸ“–CompOp
3 mathmath: IsMultiplicative.pdiv, pdiv_apply, pdiv_zeta
pmul πŸ“–CompOp
8 mathmath: pmul_apply, IsMultiplicative.pmul, ppow_succ', zeta_pmul, pmul_comm, pmul_assoc, pmul_zeta, ppow_succ
ppow πŸ“–CompOp
6 mathmath: ppow_succ', ppow_apply, IsMultiplicative.ppow, ppow_one, ppow_zero, ppow_succ
zeta πŸ“–CompOp
36 mathmath: LSeries.convolution_one_eq_convolution_zeta, coe_moebius_mul_coe_zeta, zeta_apply, sum_Ioc_mul_zeta_eq_sum, LSeries_zeta_mul_Lseries_moebius, abscissaOfAbsConv_zeta, moebius_mul_coe_zeta, LSeries_zeta_eq, zeta_mul_pow_eq_sigma, zeta_pos, zeta_mul_comm, convolution_vonMangoldt_zeta, coe_zeta_mul_coe_moebius, zeta_apply_ne, pow_zero_eq_zeta, sum_Ioc_zeta, isMultiplicative_zeta, zeta_pmul, coe_zeta_smul_apply, LSeries.one_convolution_eq_zeta_convolution, LSeries_zeta_eq_riemannZeta, coe_mul_zeta_apply, LSeriesSummable_zeta_iff, mul_zeta_apply, ppow_zero, LSeriesHasSum_zeta, pdiv_zeta, coe_zeta_mul_comm, coe_zeta_mul_moebius, vonMangoldt_mul_zeta, zeta_eq_zero, zeta_mul_apply, pmul_zeta, zeta_mul_vonMangoldt, coe_zetaUnit, coe_zeta_mul_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mul_zeta_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeNat
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instMul
natToArithmeticFunction
zeta
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Nat.divisors
β€”mul_apply
Finset.sum_congr
Nat.mem_divisorsAntidiagonal
natCoe_apply
zeta_apply_ne
right_ne_zero_of_mul
Nat.cast_one
mul_one
Nat.map_div_right_divisors
Finset.sum_map
coe_zeta_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instFunLikeNat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instMul
natToArithmeticFunction
zeta
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Nat.divisors
β€”coe_zeta_smul_apply
coe_zeta_mul_comm πŸ“–mathematicalβ€”ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instMul
natToArithmeticFunction
zeta
β€”ext
coe_zeta_mul_apply
coe_mul_zeta_apply
coe_zeta_smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLikeNat
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
natToArithmeticFunction
zeta
Finset.sum
Nat.divisors
β€”smul_apply
Finset.sum_congr
Nat.mem_divisorsAntidiagonal
natCoe_apply
zeta_apply_ne
left_ne_zero_of_mul
Nat.cast_one
one_smul
Nat.map_div_left_divisors
Finset.sum_map
isMultiplicative_zeta πŸ“–mathematicalβ€”IsMultiplicative
Nat.instMonoidWithZero
zeta
β€”IsMultiplicative.iff_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
mul_one
mul_zeta_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
instMul
Nat.instSemiring
zeta
Finset.sum
Nat.instAddCommMonoid
Nat.divisors
β€”natCoe_nat
coe_mul_zeta_apply
pdiv_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
instFunLikeNat
pdiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”β€”
pdiv_zeta πŸ“–mathematicalβ€”pdiv
DivisionSemiring.toGroupWithZero
natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
zeta
β€”ext
map_zero
Nat.cast_one
div_one
pmul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
instFunLikeNat
pmul
MulZeroClass.toMul
β€”β€”
pmul_assoc πŸ“–mathematicalβ€”pmul
SemigroupWithZero.toMulZeroClass
β€”ext
mul_assoc
pmul_comm πŸ“–mathematicalβ€”pmul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”ext
mul_comm
pmul_zeta πŸ“–mathematicalβ€”pmul
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
zeta
β€”ext
map_zero
Nat.cast_one
mul_one
ppow_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeNat
ppow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”ppow.eq_1
ppow_one πŸ“–mathematicalβ€”ppowβ€”ext
pow_one
ppow_succ πŸ“–mathematicalβ€”ppow
pmul
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
ppow_apply
pow_succ
pow_zero
one_mul
ppow_zero
zeta_pmul
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
ppow_succ' πŸ“–mathematicalβ€”ppow
pmul
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
ppow_apply
pow_succ'
pow_zero
mul_one
ppow_zero
pmul_zeta
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
ppow_zero πŸ“–mathematicalβ€”ppow
natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
zeta
β€”ppow.eq_1
sum_divisorsAntidiagonal_eq_sum_divisors πŸ“–mathematicalβ€”Finset.sum
Nat.divisorsAntidiagonal
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLikeNat
Nat.divisors
β€”coe_zeta_smul_apply
Finset.sum_congr
Nat.cast_ite
Nat.cast_zero
Nat.cast_one
ite_smul
one_smul
zeta_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
zeta
β€”β€”
zeta_apply_ne πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
zeta
β€”β€”
zeta_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
zeta
β€”β€”
zeta_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
instMul
Nat.instSemiring
zeta
Finset.sum
Nat.instAddCommMonoid
Nat.divisors
β€”natCoe_nat
coe_zeta_mul_apply
zeta_mul_comm πŸ“–mathematicalβ€”ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instMul
Nat.instSemiring
zeta
β€”natCoe_nat
coe_zeta_mul_comm
zeta_pmul πŸ“–mathematicalβ€”pmul
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
zeta
β€”ext
map_zero
Nat.cast_one
one_mul
zeta_pos πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
zeta
β€”Nat.instCanonicallyOrderedAdd

ArithmeticFunction.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
pdiv πŸ“–mathematicalArithmeticFunction.IsMultiplicative
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
ArithmeticFunction.pdivβ€”map_one
div_self
NeZero.one
GroupWithZero.toNontrivial
map_mul_of_coprime
div_eq_mul_inv
mul_inv
mul_mul_mul_comm
pmul πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ArithmeticFunction.pmul
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_one
mul_one
map_mul_of_coprime
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
ppow πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ArithmeticFunction.ppowβ€”natCast
ArithmeticFunction.isMultiplicative_zeta
ArithmeticFunction.ppow_succ'
pmul

ArithmeticFunction.zeta

Definitions

NameCategoryTheorems
termΞΆ πŸ“–CompOpβ€”

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalArithmeticFunctionZeta πŸ“–CompOpβ€”

---

← Back to Index