π Source: Mathlib/NumberTheory/Fermat.lean
fermatNumber
fermatNumber_eq_fermatNumber_sq_sub_two_mul_fermatNumber_sub_one_sq
coprime_fermatNumber_fermatNumber
fermatNumber_eq_prod_add_two
fermatNumber_injective
fermatNumber_mono
fermatNumber_ne_one
fermatNumber_one
fermatNumber_strictMono
fermatNumber_succ
fermatNumber_two
fermatNumber_zero
fermat_primeFactors_one_lt
odd_fermatNumber
pairwise_coprime_fermatNumber
pepin_primality
pepin_primality'
pow_of_pow_add_prime
pow_pow_add_primeFactors_one_lt
prime_of_pow_sub_one_prime
prod_fermatNumber
three_le_fermatNumber
two_lt_fermatNumber
two_mul_fermatNumber_sub_one_sq_le_fermatNumber_sq
Nat.fermatNumber
Monoid.toNatPow
instMonoid
Nat.fermatNumber_eq_fermatNumber_sq_sub_two_mul_fermatNumber_sub_one_sq
Nat.cast_sub
Nat.two_mul_fermatNumber_sub_one_sq_le_fermatNumber_sq
Nat.instAtLeastTwoHAddOfNat
Nat.cast_pow
Nat.cast_add
Nat.cast_one
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.cast_mul
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
instAddLeftMono
Int.fermatNumber_eq_fermatNumber_sq_sub_two_mul_fermatNumber_sub_one_sq
Dvd.dvd.trans
Finset.dvd_prod_of_mem
Finset.mem_range
dvd_prime
prime_two
Odd.not_two_dvd_nat
instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.RingNF.nat_rawCast_1
add_zero
pow_one
mul_one
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Finset.prod
instCommMonoid
Finset.range
le_of_lt
StrictMono.injective
Monotone
instPreorder
StrictMono.monotone
StrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
one_lt_two
instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
fermatNumber.eq_1
pow_succ
mul_comm
pow_mul'
instOrderedSub
Prime
Odd.ne_two_of_dvd_nat
Even.add_one
even_pow
even_two
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
instStarOrderedRing
two_ne_zero
add_assoc
pow_add
mul_assoc
MulZeroClass.mul_zero
zero_add
ZMod.exists_sq_eq_two_iff
ZMod.natCast_eq_zero_iff
cast_add
cast_one
cast_pow
ZMod.natCast_val
NeZero.of_gt'
instCanonicallyOrderedAdd
Prime.one_lt'
ZMod.cast_id
pow_mul
sq
Odd
instSemiring
LT.lt.ne'
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
two_pos
Pairwise
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
lucas_primality
neg_one_sq
prime_dvd_prime_iff_eq
Prime.dvd_of_dvd_pow
ZMod.neg_one_ne_one
exists_eq_two_pow_mul_odd
Odd.nat_add_dvd_pow_add_pow
Prime.dvd_iff_eq
one_pow
lt_of_le_of_ne
Prime.two_le
eq_neg_iff_add_eq_zero
cast_zero
one_ne_zero
NeZero.one
ZMod.nontrivial
zero_eq_neg
zero_pow
orderOf_eq_prime_pow
fact_prime_two
Prime.one_le
ZMod.orderOf_dvd_card_sub_one
tsub_pos_iff_lt
Prime.pos
LT.lt.trans
one_pos
Mathlib.Tactic.Contrapose.contraposeβ
sub_dvd_pow_sub_pow
LT.lt.le
prime_def
two_le_iff
pow_right_injective
le_rfl
Prime.eq_one_or_self_of_dvd
Finset.prod_range_succ
sq_sub_sq
---
β Back to Index