Fermat numbers #
The Fermat numbers are a sequence of natural numbers defined as Nat.fermatNumber n = 2^(2^n) + 1,
for all natural numbers n.
Main theorems #
Nat.coprime_fermatNumber_fermatNumber: two distinct Fermat numbers are coprime.Nat.pepin_primality: For 0 < n, Fermat number Fβ is prime if3 ^ (2 ^ (2 ^ n - 1)) = -1 mod Fβfermat_primeFactors_one_lt: For 1 < n, Prime factors the Fermat number Fβ are of formk * 2 ^ (n + 2) + 1.
Fermat numbers: the n-th Fermat number is defined as 2^(2^n) + 1.
Equations
Instances For
Goldbach's theorem : no two distinct Fermat numbers share a common factor greater than one.
From a letter to Euler, see page 37 in [juskevic2022].
theorem
Nat.pairwise_coprime_fermatNumber :
Pairwise fun (m n : β) => m.fermatNumber.Coprime n.fermatNumber
Fβ = 2^(2^n)+1 is prime if 3^(2^(2^n-1)) = -1 mod Fβ (PΓ©pin's test).
Fβ = 2^(2^n)+1 is prime if 3^((Fβ - 1)/2) = -1 mod Fβ (PΓ©pin's test).