Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/ModularForms/Basic.lean

Statistics

MetricCount
DefinitionsCuspForm, instSMul, coeHom, copy, funLike, hasAdd, instAddCommGroup, instInhabited, instModuleComplexOfHasDetOneFinOfNatNatReal, instModuleReal, instNeg, instSMul, instSub, instZero, toSlashInvariantForm, translate, CuspFormClass, ModularForm, add, coeHom, const, constℝ, copy, funLike, instAddCommGroup, instGAlgebra, instGCommRing, instGMulIntOfHasDetPlusMinusOneFinOfNatNatReal, instGOneIntOfHasDetPlusMinusOneFinOfNatNatReal, instInhabited, instIntCastOfNatIntOfHasDetPlusMinusOneFinNatReal, instModuleComplexOfHasDetOneFinOfNatNatReal, instModuleReal, instNatCastOfNatIntOfHasDetPlusMinusOneFinNatReal, instNeg, instOneOfNatIntOfHasDetPlusMinusOneFinNatReal, instSMulβ„‚, instSMulℝ, instSub, instZero, mcast, mul, prod, prodEqualWeights, toSlashInvariantForm, translate, ModularFormClass, J
48
Theoremscoe_smul, smul_apply, add_apply, coeHom_apply, coe_add, coe_neg, coe_smul, coe_sub, coe_translate, coe_zero, ext, ext_iff, holo', instIsScalarTowerComplex, instModularFormClassOfCuspFormClass, neg_apply, smul_apply, sub_apply, toFun_eq_coe, toSlashInvariantForm_coe, zero_apply, zero_at_cusps', cuspForm, holo, toSlashInvariantFormClass, zero_at_cusps, zero_at_infty, zero_at_infty_slash, slash, coe_smul, smul_apply, add_apply, bdd_at_cusps', coeHom_apply, coe_add, coe_const, coe_constℝ, coe_eq_zero_iff, coe_intCast, coe_mul, coe_natCast, coe_neg, coe_prod, coe_prodEqualWeights, coe_smul, coe_sub, coe_translate, coe_zero, const_apply, const_toFun, constℝ_apply, constℝ_toFun, ext, ext_iff, gradedMonoid_eq_of_cast, holo', instIsScalarTowerComplex, mul_coe, neg_apply, one_coe_eq_one, smul_apply, sub_apply, toFun_eq_coe, toSlashInvariantForm_coe, toSlashInvariantForm_intCast, toSlashInvariantForm_natCast, zero_apply, bdd_at_cusps, bdd_at_infty, bdd_at_infty_slash, continuous, holo, modularForm, toSlashInvariantFormClass, J_smul, J_sq, coe_J_smul, denom_J, det_J, sigma_J, val_J, instFactIsCuspInftyRealOfIsArithmetic
82
Total130

CuspForm

Definitions

NameCategoryTheorems
coeHom πŸ“–CompOp
1 mathmath: coeHom_apply
copy πŸ“–CompOpβ€”
funLike πŸ“–CompOp
19 mathmath: toFun_eq_coe, zero_apply, coe_trace, coeHom_apply, coe_smul, coe_neg, coe_translate, coe_sub, neg_apply, ext_iff, coe_zero, CuspFormClass.cuspForm, IsGLPos.smul_apply, sub_apply, IsGLPos.coe_smul, coe_add, toSlashInvariantForm_coe, smul_apply, add_apply
hasAdd πŸ“–CompOp
2 mathmath: coe_add, add_apply
instAddCommGroup πŸ“–CompOp
1 mathmath: coeHom_apply
instInhabited πŸ“–CompOpβ€”
instModuleComplexOfHasDetOneFinOfNatNatReal πŸ“–CompOpβ€”
instModuleReal πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
2 mathmath: coe_neg, neg_apply
instSMul πŸ“–CompOp
2 mathmath: coe_smul, smul_apply
instSub πŸ“–CompOp
2 mathmath: coe_sub, sub_apply
instZero πŸ“–CompOp
2 mathmath: zero_apply, coe_zero
toSlashInvariantForm πŸ“–CompOp
4 mathmath: toFun_eq_coe, holo', zero_at_cusps', toSlashInvariantForm_coe
translate πŸ“–CompOp
1 mathmath: coe_translate

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
hasAdd
Complex.instAdd
β€”β€”
coeHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CuspForm
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroup
Pi.addZeroClass
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoidHom.instFunLike
coeHom
funLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
hasAdd
Pi.instAdd
Complex.instAdd
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instNeg
Pi.instNeg
Complex.instNeg
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instSMul
Function.hasSMul
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instSub
Pi.instSub
Complex.instSub
β€”β€”
coe_translate πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
ConjAct
Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
Subgroup
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
ConjAct.instDivInvMonoid
Units.instDivInvMonoid
MulAction.toSemigroupAction
Subgroup.pointwiseMulAction
ConjAct.instMulDistribMulAction
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
ConjAct.toConjAct
Units.instInv
MonoidHom
Matrix.SpecialLinearGroup
Real.commRing
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.SpecialLinearGroup.monoid
Units.instMulOneClass
MonoidHom.instFunLike
Matrix.SpecialLinearGroup.toGL
Int.instCommRing
Matrix.SpecialLinearGroup.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
UpperHalfPlane
Complex
funLike
translate
SlashAction.map
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instZero
Pi.instZero
Complex.instZero
β€”β€”
ext πŸ“–β€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
β€”ext
holo' πŸ“–mathematicalβ€”MDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
modelWithCornersSelf
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
UpperHalfPlane.instChartedSpaceComplex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
chartedSpaceSelf
DFunLike.coe
SlashInvariantForm
SlashInvariantForm.funLike
toSlashInvariantForm
β€”β€”
instIsScalarTowerComplex πŸ“–mathematicalβ€”IsScalarTower
Complex
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”smul_assoc
one_smul
IsScalarTower.right
instModularFormClassOfCuspFormClass πŸ“–mathematicalβ€”ModularFormClassβ€”CuspFormClass.toSlashInvariantFormClass
CuspFormClass.holo
Filter.ZeroAtFilter.boundedAtFilter
CuspFormClass.zero_at_cusps
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instNeg
Complex.instNeg
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instSMul
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instSub
Complex.instSub
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SlashInvariantForm.toFun
toSlashInvariantForm
DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
β€”β€”
toSlashInvariantForm_coe πŸ“–mathematicalβ€”DFunLike.coe
SlashInvariantForm
UpperHalfPlane
Complex
SlashInvariantForm.funLike
toSlashInvariantForm
CuspForm
funLike
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
funLike
instZero
Complex.instZero
β€”β€”
zero_at_cusps' πŸ“–mathematicalIsCuspOnePoint.IsZeroAt
SlashInvariantForm.toFun
toSlashInvariantForm
β€”β€”

CuspForm.IsGLPos

Definitions

NameCategoryTheorems
instSMul πŸ“–CompOp
2 mathmath: smul_apply, coe_smul

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
CuspForm.funLike
instSMul
Function.hasSMul
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
CuspForm
UpperHalfPlane
Complex
CuspForm.funLike
instSMul
β€”β€”

CuspFormClass

Theorems

NameKindAssumesProvesValidatesDepends On
cuspForm πŸ“–mathematicalβ€”CuspFormClass
CuspForm
CuspForm.funLike
β€”SlashInvariantForm.slash_action_eq'
CuspForm.holo'
CuspForm.zero_at_cusps'
holo πŸ“–mathematicalβ€”MDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
modelWithCornersSelf
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
UpperHalfPlane.instChartedSpaceComplex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
chartedSpaceSelf
DFunLike.coe
β€”β€”
toSlashInvariantFormClass πŸ“–mathematicalβ€”SlashInvariantFormClassβ€”β€”
zero_at_cusps πŸ“–mathematicalIsCuspOnePoint.IsZeroAt
DFunLike.coe
UpperHalfPlane
Complex
β€”β€”
zero_at_infty πŸ“–mathematicalβ€”UpperHalfPlane.IsZeroAtImInfty
Complex
Complex.instZero
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
DFunLike.coe
UpperHalfPlane
β€”OnePoint.isZeroAt_infty_iff
zero_at_cusps
Fact.out
zero_at_infty_slash πŸ“–mathematicalβ€”UpperHalfPlane.IsZeroAtImInfty
Complex
Complex.instZero
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
DFunLike.coe
β€”OnePoint.isZeroAt_infty_iff
ModularForm.SL_slash
OnePoint.IsZeroAt.smul_iff
zero_at_cusps
Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z
isCusp_SL2Z_iff'

MDifferentiable

Theorems

NameKindAssumesProvesValidatesDepends On
slash πŸ“–mathematicalMDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
modelWithCornersSelf
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
UpperHalfPlane.instChartedSpaceComplex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
chartedSpaceSelf
SlashAction.map
Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.instSlashActionIntGeneralLinearGroupFinOfNatNatRealForallUpperHalfPlaneComplex
β€”Ne.lt_or_gt
Matrix.GeneralLinearGroup.det_ne_zero
Real.instNontrivial
UpperHalfPlane.J_sq
one_mul
SlashAction.slash_mul
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
UpperHalfPlane.det_J
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid

ModularForm

Definitions

NameCategoryTheorems
add πŸ“–CompOp
2 mathmath: coe_add, add_apply
coeHom πŸ“–CompOp
1 mathmath: coeHom_apply
const πŸ“–CompOp
3 mathmath: const_toFun, const_apply, coe_const
constℝ πŸ“–CompOp
3 mathmath: constℝ_apply, coe_constℝ, constℝ_toFun
copy πŸ“–CompOpβ€”
funLike πŸ“–CompOp
45 mathmath: coe_mul, qExpansion_eq_zero_iff, qExpansionRingHom_apply, constℝ_apply, coe_constℝ, coe_neg, qExpansion_of_mul, coe_natCast, coe_prodEqualWeights, zero_apply, qExpansion_one, toSlashInvariantForm_coe, EisensteinSeries.q_expansion_riemannZeta, one_coe_eq_one, sub_apply, ext_iff, const_toFun, neg_apply, eq_const_of_weight_zero, qExpansion_sub, coe_eq_zero_iff, coeHom_apply, IsGLPos.coe_smul, IsGLPos.smul_apply, EisensteinSeries.q_expansion_bernoulli, coe_prod, smul_apply, const_apply, coe_intCast, coe_norm, coe_add, coe_const, cuspFunction_mul, ModularFormClass.modularForm, qExpansion_mul, coe_translate, coe_smul, coe_sub, toFun_eq_coe, coe_trace, coe_zero, qExpansion_of_pow, add_apply, mul_coe, constℝ_toFun
instAddCommGroup πŸ“–CompOp
6 mathmath: qExpansionRingHom_apply, levelOne_neg_weight_rank_zero, qExpansion_of_mul, levelOne_weight_zero_rank_one, coeHom_apply, qExpansion_of_pow
instGAlgebra πŸ“–CompOpβ€”
instGCommRing πŸ“–CompOp
4 mathmath: qExpansionRingHom_apply, qExpansion_of_mul, levelOne_weight_zero_rank_one, qExpansion_of_pow
instGMulIntOfHasDetPlusMinusOneFinOfNatNatReal πŸ“–CompOpβ€”
instGOneIntOfHasDetPlusMinusOneFinOfNatNatReal πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instIntCastOfNatIntOfHasDetPlusMinusOneFinNatReal πŸ“–CompOp
2 mathmath: toSlashInvariantForm_intCast, coe_intCast
instModuleComplexOfHasDetOneFinOfNatNatReal πŸ“–CompOp
2 mathmath: levelOne_neg_weight_rank_zero, levelOne_weight_zero_rank_one
instModuleReal πŸ“–CompOpβ€”
instNatCastOfNatIntOfHasDetPlusMinusOneFinNatReal πŸ“–CompOp
2 mathmath: coe_natCast, toSlashInvariantForm_natCast
instNeg πŸ“–CompOp
2 mathmath: coe_neg, neg_apply
instOneOfNatIntOfHasDetPlusMinusOneFinNatReal πŸ“–CompOp
2 mathmath: qExpansion_one, one_coe_eq_one
instSMulβ„‚ πŸ“–CompOp
2 mathmath: IsGLPos.coe_smul, IsGLPos.smul_apply
instSMulℝ πŸ“–CompOp
2 mathmath: smul_apply, coe_smul
instSub πŸ“–CompOp
2 mathmath: sub_apply, coe_sub
instZero πŸ“–CompOp
6 mathmath: qExpansion_eq_zero_iff, norm_eq_zero_iff, zero_apply, coe_eq_zero_iff, coe_zero, isZero_of_neg_weight
mcast πŸ“–CompOpβ€”
mul πŸ“–CompOp
4 mathmath: coe_mul, cuspFunction_mul, qExpansion_mul, mul_coe
prod πŸ“–CompOp
1 mathmath: coe_prod
prodEqualWeights πŸ“–CompOp
1 mathmath: coe_prodEqualWeights
toSlashInvariantForm πŸ“–CompOp
6 mathmath: toSlashInvariantForm_intCast, toSlashInvariantForm_coe, toSlashInvariantForm_natCast, holo', toFun_eq_coe, bdd_at_cusps'
translate πŸ“–CompOp
1 mathmath: coe_translate

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
add
Complex.instAdd
β€”β€”
bdd_at_cusps' πŸ“–mathematicalIsCuspOnePoint.IsBoundedAt
SlashInvariantForm.toFun
toSlashInvariantForm
β€”β€”
coeHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
ModularForm
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroup
Pi.addZeroClass
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoidHom.instFunLike
coeHom
funLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
add
Pi.instAdd
Complex.instAdd
β€”β€”
coe_const πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
const
β€”β€”
coe_constℝ πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
constℝ
Complex.ofReal
β€”β€”
coe_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
Pi.instZero
Complex.instZero
instZero
β€”coe_zero
DFunLike.coe_fn_eq
coe_intCast πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instIntCastOfNatIntOfHasDetPlusMinusOneFinNatReal
Pi.instIntCast
Complex.instIntCast
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
mul
Pi.instMul
Complex.instMul
β€”β€”
coe_natCast πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instNatCastOfNatIntOfHasDetPlusMinusOneFinNatReal
Pi.instNatCast
Complex.instNatCast
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instNeg
Pi.instNeg
Complex.instNeg
β€”β€”
coe_prod πŸ“–mathematicalFinset.sum
Int.instAddCommMonoid
DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
prod
Finset.prod
Pi.commMonoid
CommRing.toCommMonoid
Complex.commRing
β€”β€”
coe_prodEqualWeights πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
Finset.card
UpperHalfPlane
Complex
funLike
prodEqualWeights
Finset.prod
Pi.commMonoid
CommRing.toCommMonoid
Complex.commRing
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instSMulℝ
Function.hasSMul
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instSub
Pi.instSub
Complex.instSub
β€”β€”
coe_translate πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
ConjAct
Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
Subgroup
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
ConjAct.instDivInvMonoid
Units.instDivInvMonoid
MulAction.toSemigroupAction
Subgroup.pointwiseMulAction
ConjAct.instMulDistribMulAction
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
ConjAct.toConjAct
Units.instInv
UpperHalfPlane
Complex
funLike
translate
SlashAction.map
Units.instMonoid
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instSlashActionIntGeneralLinearGroupFinOfNatNatRealForallUpperHalfPlaneComplex
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instZero
Pi.instZero
Complex.instZero
β€”β€”
const_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
const
β€”β€”
const_toFun πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
const
β€”coe_const
constℝ_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
constℝ
Complex.ofReal
β€”β€”
constℝ_toFun πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
constℝ
Complex.ofReal
β€”coe_constℝ
ext πŸ“–β€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
β€”ext
gradedMonoid_eq_of_cast πŸ“–β€”ModularForm
mcast
β€”β€”β€”
holo' πŸ“–mathematicalβ€”MDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
modelWithCornersSelf
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
UpperHalfPlane.instChartedSpaceComplex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
chartedSpaceSelf
DFunLike.coe
SlashInvariantForm
SlashInvariantForm.funLike
toSlashInvariantForm
β€”β€”
instIsScalarTowerComplex πŸ“–mathematicalβ€”IsScalarTower
Complex
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”smul_assoc
one_smul
IsScalarTower.right
mul_coe πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
mul
Pi.instMul
Complex.instMul
β€”coe_mul
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instNeg
Complex.instNeg
β€”β€”
one_coe_eq_one πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instOneOfNatIntOfHasDetPlusMinusOneFinNatReal
Pi.instOne
Complex.instOne
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instSMulℝ
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instSub
Complex.instSub
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SlashInvariantForm.toFun
toSlashInvariantForm
DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
β€”β€”
toSlashInvariantForm_coe πŸ“–mathematicalβ€”DFunLike.coe
SlashInvariantForm
UpperHalfPlane
Complex
SlashInvariantForm.funLike
toSlashInvariantForm
ModularForm
funLike
β€”β€”
toSlashInvariantForm_intCast πŸ“–mathematicalβ€”toSlashInvariantForm
ModularForm
instIntCastOfNatIntOfHasDetPlusMinusOneFinNatReal
SlashInvariantForm
SlashInvariantForm.instIntCastOfNatIntOfHasDetPlusMinusOneFinNatReal
β€”β€”
toSlashInvariantForm_natCast πŸ“–mathematicalβ€”toSlashInvariantForm
ModularForm
instNatCastOfNatIntOfHasDetPlusMinusOneFinNatReal
SlashInvariantForm
SlashInvariantForm.instNatCastOfNatIntOfHasDetPlusMinusOneFinNatReal
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
funLike
instZero
Complex.instZero
β€”β€”

ModularForm.IsGLPos

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
ModularForm.funLike
ModularForm.instSMulβ„‚
Function.hasSMul
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ModularForm
UpperHalfPlane
Complex
ModularForm.funLike
ModularForm.instSMulβ„‚
β€”β€”

ModularFormClass

Theorems

NameKindAssumesProvesValidatesDepends On
bdd_at_cusps πŸ“–mathematicalIsCuspOnePoint.IsBoundedAt
DFunLike.coe
UpperHalfPlane
Complex
β€”β€”
bdd_at_infty πŸ“–mathematicalβ€”UpperHalfPlane.IsBoundedAtImInfty
Complex
Complex.instNorm
DFunLike.coe
UpperHalfPlane
β€”OnePoint.isBoundedAt_infty_iff
bdd_at_cusps
Fact.out
bdd_at_infty_slash πŸ“–mathematicalβ€”UpperHalfPlane.IsBoundedAtImInfty
Complex
Complex.instNorm
SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
DFunLike.coe
β€”OnePoint.isBoundedAt_infty_iff
ModularForm.SL_slash
OnePoint.IsBoundedAt.smul_iff
bdd_at_cusps
Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z
isCusp_SL2Z_iff'
continuous πŸ“–mathematicalβ€”Continuous
UpperHalfPlane
Complex
UpperHalfPlane.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
DFunLike.coe
β€”MDifferentiable.continuous
holo
holo πŸ“–mathematicalβ€”MDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
modelWithCornersSelf
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
UpperHalfPlane.instChartedSpaceComplex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
chartedSpaceSelf
DFunLike.coe
β€”β€”
modularForm πŸ“–mathematicalβ€”ModularFormClass
ModularForm
ModularForm.funLike
β€”SlashInvariantForm.slash_action_eq'
ModularForm.holo'
ModularForm.bdd_at_cusps'
toSlashInvariantFormClass πŸ“–mathematicalβ€”SlashInvariantFormClassβ€”β€”

UpperHalfPlane

Definitions

NameCategoryTheorems
J πŸ“–CompOp
7 mathmath: J_sq, sigma_J, denom_J, J_smul, coe_J_smul, det_J, val_J

Theorems

NameKindAssumesProvesValidatesDepends On
J_smul πŸ“–mathematicalβ€”Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
MulAction.toSemigroupAction
glAction
J
OpenPartialHomeomorph.toFun'
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
Complex.instNeg
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
coe
β€”ext
coe_J_smul
neg_neg
im_pos
ofComplex_apply_of_im_pos
J_sq πŸ“–mathematicalβ€”Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
Monoid.toNatPow
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
J
Units.instOne
β€”Units.ext
Matrix.ext
sq
Matrix.cons_mul
Matrix.vecMul_cons
neg_smul
one_smul
Matrix.neg_cons
neg_neg
neg_zero
Matrix.neg_empty
Matrix.tail_cons
zero_smul
add_zero
zero_add
Matrix.empty_mul
Equiv.symm_apply_apply
Matrix.cons_val'
Matrix.cons_val_fin_one
Matrix.one_fin_two
coe_J_smul πŸ“–mathematicalβ€”coe
Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
MulAction.toSemigroupAction
glAction
J
Complex
Complex.instNeg
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
β€”Matrix.det_fin_two_of
mul_one
MulZeroClass.mul_zero
sub_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Matrix.cons_val'
Matrix.cons_val_fin_one
Complex.ofReal_neg
neg_mul
one_mul
add_zero
MulZeroClass.zero_mul
zero_add
div_one
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
Complex.instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
denom_J πŸ“–mathematicalβ€”denom
J
coe
Complex
Complex.instOne
β€”Matrix.cons_val'
Matrix.cons_val_fin_one
MulZeroClass.zero_mul
zero_add
det_J πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Matrix.GeneralLinearGroup
Real
Fin.fintype
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulOneClass.toMulOne
Units.instMulOneClass
Matrix
Matrix.semiring
MonoidHom.instFunLike
Matrix.GeneralLinearGroup.det
J
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
Units.instOne
β€”Units.ext
Matrix.det_fin_two_of
mul_one
MulZeroClass.mul_zero
sub_zero
sigma_J πŸ“–mathematicalβ€”Οƒ
J
starRingEnd
Complex
Complex.instCommSemiring
Complex.instStarRing
β€”Matrix.det_fin_two_of
mul_one
MulZeroClass.mul_zero
sub_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
val_J πŸ“–mathematicalβ€”Units.val
Matrix
Real
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Real.semiring
Fin.fintype
J
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Real.instNeg
Real.instOne
Real.instZero
Matrix.vecEmpty
β€”β€”

(root)

Definitions

NameCategoryTheorems
CuspForm πŸ“–CompData
19 mathmath: CuspForm.toFun_eq_coe, CuspForm.zero_apply, CuspForm.coe_trace, CuspForm.coeHom_apply, CuspForm.coe_smul, CuspForm.coe_neg, CuspForm.coe_translate, CuspForm.coe_sub, CuspForm.neg_apply, CuspForm.ext_iff, CuspForm.coe_zero, CuspFormClass.cuspForm, CuspForm.IsGLPos.smul_apply, CuspForm.sub_apply, CuspForm.IsGLPos.coe_smul, CuspForm.coe_add, CuspForm.toSlashInvariantForm_coe, CuspForm.smul_apply, CuspForm.add_apply
CuspFormClass πŸ“–CompData
1 mathmath: CuspFormClass.cuspForm
ModularForm πŸ“–CompData
51 mathmath: ModularForm.coe_mul, qExpansion_eq_zero_iff, qExpansionRingHom_apply, ModularForm.constℝ_apply, ModularForm.coe_constℝ, ModularForm.norm_eq_zero_iff, ModularForm.levelOne_neg_weight_rank_zero, ModularForm.toSlashInvariantForm_intCast, ModularForm.coe_neg, qExpansion_of_mul, ModularForm.coe_natCast, ModularForm.coe_prodEqualWeights, ModularForm.zero_apply, qExpansion_one, ModularForm.levelOne_weight_zero_rank_one, ModularForm.toSlashInvariantForm_coe, EisensteinSeries.q_expansion_riemannZeta, ModularForm.one_coe_eq_one, ModularForm.sub_apply, ModularForm.ext_iff, ModularForm.const_toFun, ModularForm.neg_apply, ModularForm.eq_const_of_weight_zero, qExpansion_sub, ModularForm.coe_eq_zero_iff, ModularForm.coeHom_apply, ModularForm.IsGLPos.coe_smul, ModularForm.IsGLPos.smul_apply, EisensteinSeries.q_expansion_bernoulli, ModularForm.coe_prod, ModularForm.smul_apply, ModularForm.const_apply, ModularForm.toSlashInvariantForm_natCast, ModularForm.coe_intCast, ModularForm.coe_norm, ModularForm.coe_add, ModularForm.coe_const, ModularForm.cuspFunction_mul, ModularFormClass.modularForm, ModularForm.qExpansion_mul, ModularForm.coe_translate, ModularForm.coe_smul, ModularForm.coe_sub, ModularForm.toFun_eq_coe, ModularForm.coe_trace, ModularForm.coe_zero, ModularForm.isZero_of_neg_weight, qExpansion_of_pow, ModularForm.add_apply, ModularForm.mul_coe, ModularForm.constℝ_toFun
ModularFormClass πŸ“–CompData
2 mathmath: CuspForm.instModularFormClassOfCuspFormClass, ModularFormClass.modularForm

Theorems

NameKindAssumesProvesValidatesDepends On
instFactIsCuspInftyRealOfIsArithmetic πŸ“–mathematicalβ€”Fact
IsCusp
OnePoint.infty
Real
β€”OnePoint.map_infty

---

← Back to Index