Documentation

Mathlib.NumberTheory.ModularForms.Basic

Modular forms #

This file defines modular forms and proves some basic properties about them. Including constructing the graded ring of modular forms.

We begin by defining modular forms and cusp forms as extension of SlashInvariantForms then we define the space of modular forms, cusp forms and prove that the product of two modular forms is a modular form.

The matrix [-1, 0; 0, 1], which defines an anti-holomorphic involution of via τ ↦ -conj τ.

Equations
    Instances For
      @[simp]
      theorem UpperHalfPlane.val_J :
      J = !![-1, 0; 0, 1]

      The weight k slash action of GL(2, ℝ) preserves holomorphic functions.

      structure ModularForm (Γ : Subgroup (GL (Fin 2) )) (k : ) extends SlashInvariantForm Γ k :

      These are SlashInvariantForm's that are holomorphic and bounded at infinity.

      Instances For
        structure CuspForm (Γ : Subgroup (GL (Fin 2) )) (k : ) extends SlashInvariantForm Γ k :

        These are SlashInvariantForms that are holomorphic and zero at infinity.

        Instances For

          ModularFormClass F Γ k says that F is a type of bundled functions that extend SlashInvariantFormClass by requiring that the functions be holomorphic and bounded at all cusps.

          Instances
            class CuspFormClass (F : Type u_2) (Γ : outParam (Subgroup (GL (Fin 2) ))) (k : outParam ) [FunLike F UpperHalfPlane ] extends SlashInvariantFormClass F Γ k :

            CuspFormClass F Γ k says that F is a type of bundled functions that extend SlashInvariantFormClass by requiring that the functions be holomorphic and zero at all cusps.

            Instances
              @[instance 100]
              Equations
                @[instance 100]
                @[instance 100]
                instance CuspForm.funLike (Γ : Subgroup (GL (Fin 2) )) (k : ) :
                Equations
                  @[instance 100]
                  instance CuspFormClass.cuspForm (Γ : Subgroup (GL (Fin 2) )) (k : ) :
                  theorem ModularForm.toFun_eq_coe {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) :
                  f.toFun = f
                  theorem CuspForm.toFun_eq_coe {Γ : Subgroup (GL (Fin 2) )} {k : } {f : CuspForm Γ k} :
                  f.toFun = f
                  @[simp]
                  theorem CuspForm.toSlashInvariantForm_coe {Γ : Subgroup (GL (Fin 2) )} {k : } (f : CuspForm Γ k) :
                  theorem ModularForm.ext {Γ : Subgroup (GL (Fin 2) )} {k : } {f g : ModularForm Γ k} (h : ∀ (x : UpperHalfPlane), f x = g x) :
                  f = g
                  theorem ModularForm.ext_iff {Γ : Subgroup (GL (Fin 2) )} {k : } {f g : ModularForm Γ k} :
                  f = g ∀ (x : UpperHalfPlane), f x = g x
                  theorem CuspForm.ext {Γ : Subgroup (GL (Fin 2) )} {k : } {f g : CuspForm Γ k} (h : ∀ (x : UpperHalfPlane), f x = g x) :
                  f = g
                  theorem CuspForm.ext_iff {Γ : Subgroup (GL (Fin 2) )} {k : } {f g : CuspForm Γ k} :
                  f = g ∀ (x : UpperHalfPlane), f x = g x
                  def ModularForm.copy {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) (f' : UpperHalfPlane) (h : f' = f) :

                  Copy of a ModularForm with a new toFun equal to the old one. Useful to fix definitional equalities.

                  Equations
                    Instances For
                      def CuspForm.copy {Γ : Subgroup (GL (Fin 2) )} {k : } (f : CuspForm Γ k) (f' : UpperHalfPlane) (h : f' = f) :

                      Copy of a CuspForm with a new toFun equal to the old one. Useful to fix definitional equalities.

                      Equations
                        Instances For
                          instance ModularForm.add {Γ : Subgroup (GL (Fin 2) )} {k : } :
                          Equations
                            @[simp]
                            theorem ModularForm.coe_add {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : ModularForm Γ k) :
                            ⇑(f + g) = f + g
                            @[simp]
                            theorem ModularForm.add_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : ModularForm Γ k) (z : UpperHalfPlane) :
                            (f + g) z = f z + g z
                            instance ModularForm.instZero {Γ : Subgroup (GL (Fin 2) )} {k : } :
                            Equations
                              @[simp]
                              theorem ModularForm.coe_zero {Γ : Subgroup (GL (Fin 2) )} {k : } :
                              0 = 0
                              @[simp]
                              theorem ModularForm.zero_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (z : UpperHalfPlane) :
                              0 z = 0
                              @[simp]
                              theorem ModularForm.coe_eq_zero_iff {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) :
                              f = 0 f = 0
                              instance ModularForm.instSMulℝ {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [SMul α ] [IsScalarTower α ] :
                              SMul α (ModularForm Γ k)
                              Equations
                                @[simp]
                                theorem ModularForm.coe_smul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [SMul α ] [IsScalarTower α ] (f : ModularForm Γ k) (n : α) :
                                ⇑(n f) = n f
                                @[simp]
                                theorem ModularForm.smul_apply {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [SMul α ] [IsScalarTower α ] (f : ModularForm Γ k) (n : α) (z : UpperHalfPlane) :
                                (n f) z = n f z
                                instance ModularForm.instSMulℂ {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] :
                                SMul α (ModularForm Γ k)
                                Equations
                                  @[simp]
                                  theorem ModularForm.IsGLPos.coe_smul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] (f : ModularForm Γ k) (n : α) :
                                  ⇑(n f) = n f
                                  @[simp]
                                  theorem ModularForm.IsGLPos.smul_apply {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_1} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] (f : ModularForm Γ k) (n : α) (z : UpperHalfPlane) :
                                  (n f) z = n f z
                                  instance ModularForm.instNeg {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                  Equations
                                    @[simp]
                                    theorem ModularForm.coe_neg {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) :
                                    ⇑(-f) = -f
                                    @[simp]
                                    theorem ModularForm.neg_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) (z : UpperHalfPlane) :
                                    (-f) z = -f z
                                    instance ModularForm.instSub {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                    Equations
                                      @[simp]
                                      theorem ModularForm.coe_sub {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : ModularForm Γ k) :
                                      ⇑(f - g) = f - g
                                      @[simp]
                                      theorem ModularForm.sub_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : ModularForm Γ k) (z : UpperHalfPlane) :
                                      (f - g) z = f z - g z

                                      Additive coercion from ModularForm to ℍ → ℂ.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem ModularForm.coeHom_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f : ModularForm Γ k) (a : UpperHalfPlane) :
                                          coeHom f a = f a
                                          def ModularForm.mul {Γ : Subgroup (GL (Fin 2) )} {k_1 k_2 : } [Γ.HasDetPlusMinusOne] (f : ModularForm Γ k_1) (g : ModularForm Γ k_2) :
                                          ModularForm Γ (k_1 + k_2)

                                          The modular form of weight k_1 + k_2 given by the product of two modular forms of weights k_1 and k_2.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem ModularForm.coe_mul {Γ : Subgroup (GL (Fin 2) )} {k_1 k_2 : } [Γ.HasDetPlusMinusOne] (f : ModularForm Γ k_1) (g : ModularForm Γ k_2) :
                                              (f.mul g) = f * g
                                              @[deprecated ModularForm.coe_mul (since := "2025-12-06")]
                                              theorem ModularForm.mul_coe {Γ : Subgroup (GL (Fin 2) )} {k_1 k_2 : } [Γ.HasDetPlusMinusOne] (f : ModularForm Γ k_1) (g : ModularForm Γ k_2) :
                                              (f.mul g) = f * g

                                              Alias of ModularForm.coe_mul.

                                              def ModularForm.const {Γ : Subgroup (GL (Fin 2) )} (x : ) [Γ.HasDetOne] :

                                              The constant function with value x : ℂ as a modular form of weight 0 and any level.

                                              Equations
                                                Instances For
                                                  @[deprecated ModularForm.coe_const (since := "2025-12-06")]

                                                  Alias of ModularForm.coe_const.

                                                  @[simp]
                                                  theorem ModularForm.const_apply {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetOne] (x : ) (τ : UpperHalfPlane) :
                                                  (const x) τ = x

                                                  The constant function with value x : ℂ as a modular form of weight 0 and any level.

                                                  Equations
                                                    Instances For
                                                      @[deprecated ModularForm.coe_constℝ (since := "2025-12-06")]

                                                      Alias of ModularForm.coe_constℝ.

                                                      @[simp]
                                                      theorem ModularForm.constℝ_apply {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (x : ) (τ : UpperHalfPlane) :
                                                      (constℝ x) τ = x
                                                      @[simp]
                                                      theorem ModularForm.coe_natCast {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (n : ) :
                                                      n = n
                                                      @[simp]
                                                      theorem ModularForm.coe_intCast {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (z : ) :
                                                      z = z
                                                      instance CuspForm.hasAdd {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                      Add (CuspForm Γ k)
                                                      Equations
                                                        @[simp]
                                                        theorem CuspForm.coe_add {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : CuspForm Γ k) :
                                                        ⇑(f + g) = f + g
                                                        @[simp]
                                                        theorem CuspForm.add_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : CuspForm Γ k) (z : UpperHalfPlane) :
                                                        (f + g) z = f z + g z
                                                        instance CuspForm.instZero {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                        Zero (CuspForm Γ k)
                                                        Equations
                                                          @[simp]
                                                          theorem CuspForm.coe_zero {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                          0 = 0
                                                          @[simp]
                                                          theorem CuspForm.zero_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (z : UpperHalfPlane) :
                                                          0 z = 0
                                                          instance CuspForm.instSMul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] :
                                                          SMul α (CuspForm Γ k)
                                                          Equations
                                                            @[simp]
                                                            theorem CuspForm.coe_smul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] (f : CuspForm Γ k) (n : α) :
                                                            ⇑(n f) = n f
                                                            @[simp]
                                                            theorem CuspForm.smul_apply {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] (f : CuspForm Γ k) (n : α) {z : UpperHalfPlane} :
                                                            (n f) z = n f z
                                                            instance CuspForm.IsGLPos.instSMul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] :
                                                            SMul α (CuspForm Γ k)
                                                            Equations
                                                              @[simp]
                                                              theorem CuspForm.IsGLPos.coe_smul {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] (f : CuspForm Γ k) (n : α) :
                                                              ⇑(n f) = n f
                                                              @[simp]
                                                              theorem CuspForm.IsGLPos.smul_apply {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [IsScalarTower α ] [Γ.HasDetOne] (f : CuspForm Γ k) (n : α) {z : UpperHalfPlane} :
                                                              (n f) z = n f z
                                                              instance CuspForm.instNeg {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                              Neg (CuspForm Γ k)
                                                              Equations
                                                                @[simp]
                                                                theorem CuspForm.coe_neg {Γ : Subgroup (GL (Fin 2) )} {k : } (f : CuspForm Γ k) :
                                                                ⇑(-f) = -f
                                                                @[simp]
                                                                theorem CuspForm.neg_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f : CuspForm Γ k) (z : UpperHalfPlane) :
                                                                (-f) z = -f z
                                                                instance CuspForm.instSub {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                                Sub (CuspForm Γ k)
                                                                Equations
                                                                  @[simp]
                                                                  theorem CuspForm.coe_sub {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : CuspForm Γ k) :
                                                                  ⇑(f - g) = f - g
                                                                  @[simp]
                                                                  theorem CuspForm.sub_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : CuspForm Γ k) (z : UpperHalfPlane) :
                                                                  (f - g) z = f z - g z
                                                                  def CuspForm.coeHom {Γ : Subgroup (GL (Fin 2) )} {k : } :

                                                                  Additive coercion from CuspForm to ℍ → ℂ.

                                                                  Equations
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem CuspForm.coeHom_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f : CuspForm Γ k) (a : UpperHalfPlane) :
                                                                      coeHom f a = f a
                                                                      instance CuspForm.instModuleReal {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                                      Equations
                                                                        instance CuspForm.instInhabited {Γ : Subgroup (GL (Fin 2) )} {k : } :
                                                                        Equations
                                                                          def ModularForm.mcast {a b : } {Γ : Subgroup (GL (Fin 2) )} (h : a = b) (f : ModularForm Γ a) :

                                                                          Cast for modular forms, which is useful for avoiding Heqs.

                                                                          Equations
                                                                            Instances For
                                                                              theorem ModularForm.gradedMonoid_eq_of_cast {Γ : Subgroup (GL (Fin 2) )} {a b : GradedMonoid (ModularForm Γ)} (h : a.fst = b.fst) (h2 : mcast h a.snd = b.snd) :
                                                                              a = b
                                                                              def ModularForm.prod {ι : Type} {s : Finset ι} {k : ι} (m : ) (hm : m = is, k i) {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (F : (i : ι) → ModularForm Γ (k i)) :

                                                                              Given ModularForm's F i of weight k i for i : ι, define the form which as a function is a product of those indexed by s : Finset ι with weight m = ∑ i ∈ s, k i.

                                                                              Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem ModularForm.coe_prod {ι : Type} {s : Finset ι} {k : ι} (m : ) (hm : m = is, k i) {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (F : (i : ι) → ModularForm Γ (k i)) :
                                                                                  (prod m hm F) = is, (F i)
                                                                                  def ModularForm.prodEqualWeights {ι : Type} {s : Finset ι} {k : } {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (F : ιModularForm Γ k) :
                                                                                  ModularForm Γ (s.card * k)

                                                                                  Given ModularForm's F i of weight k, define the form which as a function is a product of those indexed by s : Finset ι with weight #s * k.

                                                                                  Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem ModularForm.coe_prodEqualWeights {ι : Type} {s : Finset ι} {k : } {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (F : ιModularForm Γ k) :
                                                                                      (prodEqualWeights F) = is, (F i)
                                                                                      noncomputable def ModularForm.translate {k : } {Γ : Subgroup (GL (Fin 2) )} {F : Type u_1} [FunLike F UpperHalfPlane ] (f : F) [ModularFormClass F Γ k] (g : GL (Fin 2) ) :

                                                                                      Translating a ModularForm by GL(2, ℝ), to obtain a new ModularForm.

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem ModularForm.coe_translate {k : } {Γ : Subgroup (GL (Fin 2) )} {F : Type u_1} [FunLike F UpperHalfPlane ] (f : F) [ModularFormClass F Γ k] (g : GL (Fin 2) ) :
                                                                                          (translate f g) = SlashAction.map k g f
                                                                                          noncomputable def CuspForm.translate {k : } {Γ : Subgroup (GL (Fin 2) )} {F : Type u_1} [FunLike F UpperHalfPlane ] (f : F) [CuspFormClass F Γ k] (g : GL (Fin 2) ) :

                                                                                          Translating a CuspForm by SL(2, ℤ), to obtain a new CuspForm.

                                                                                          Equations
                                                                                            Instances For