Documentation

Mathlib.NumberTheory.ModularForms.SlashInvariantForms

Slash invariant forms #

This file defines functions that are invariant under a SlashAction which forms the basis for defining ModularForm and CuspForm. We prove several instances for such spaces, in particular that they form a module over , and over if the group is contained in SL(2, ℝ).

structure SlashInvariantForm (Γ : outParam (Subgroup (GL (Fin 2) ))) (k : outParam ) :

Functions ℍ → ℂ that are invariant under the SlashAction.

Instances For

    SlashInvariantFormClass F Γ k asserts F is a type of bundled functions that are invariant under the SlashAction.

    Instances

      See note [custom simps projection].

      Equations
        Instances For
          @[simp]
          theorem SlashInvariantForm.coe_mk {Γ : outParam (Subgroup (GL (Fin 2) ))} {k : outParam } (f : UpperHalfPlane) (hf : γΓ, SlashAction.map k γ f = f) :
          { toFun := f, slash_action_eq' := hf } = f
          theorem SlashInvariantForm.ext {Γ : outParam (Subgroup (GL (Fin 2) ))} {k : outParam } {f g : SlashInvariantForm Γ k} (h : ∀ (x : UpperHalfPlane), f x = g x) :
          f = g
          theorem SlashInvariantForm.ext_iff {Γ : outParam (Subgroup (GL (Fin 2) ))} {k : outParam } {f g : SlashInvariantForm Γ k} :
          f = g ∀ (x : UpperHalfPlane), f x = g x
          def SlashInvariantForm.copy {Γ : outParam (Subgroup (GL (Fin 2) ))} {k : outParam } (f : SlashInvariantForm Γ k) (f' : UpperHalfPlane) (h : f' = f) :

          Copy of a SlashInvariantForm with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
            Instances For
              theorem SlashInvariantForm.slash_action_eqn {F : Type u_1} {Γ : Subgroup (GL (Fin 2) )} {k : } [FunLike F UpperHalfPlane ] [SlashInvariantFormClass F Γ k] (f : F) (γ : GL (Fin 2) ) ( : γ Γ) :
              SlashAction.map k γ f = f
              theorem SlashInvariantForm.slash_action_eqn' {F : Type u_1} {Γ : Subgroup (GL (Fin 2) )} [FunLike F UpperHalfPlane ] {k : } [Γ.HasDetOne] [SlashInvariantFormClass F Γ k] (f : F) {γ : GL (Fin 2) } ( : γ Γ) (z : UpperHalfPlane) :
              f (γ z) = ((γ 1 0) * z + (γ 1 1)) ^ k * f z
              theorem SlashInvariantForm.slash_action_eqn'' {F : Type u_1} {Γ : Subgroup (GL (Fin 2) )} [FunLike F UpperHalfPlane ] {k : } [Γ.HasDetOne] [SlashInvariantFormClass F Γ k] (f : F) {γ : GL (Fin 2) } ( : γ Γ) (z : UpperHalfPlane) :
              f (γ z) = UpperHalfPlane.denom γ z ^ k * f z

              Every SlashInvariantForm f satisfies f (γ • z) = (denom γ z) ^ k * f z.

              @[simp]
              theorem SlashInvariantForm.coe_add {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : SlashInvariantForm Γ k) :
              ⇑(f + g) = f + g
              @[simp]
              theorem SlashInvariantForm.add_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : SlashInvariantForm Γ k) (z : UpperHalfPlane) :
              (f + g) z = f z + g z
              @[simp]
              theorem SlashInvariantForm.coe_zero {Γ : Subgroup (GL (Fin 2) )} {k : } :
              0 = 0
              instance SlashInvariantForm.instSMul {Γ : Subgroup (GL (Fin 2) )} {k : } [Γ.HasDetOne] {α : Type u_2} [SMul α ] [IsScalarTower α ] :

              Scalar multiplication by , assuming that Γ ⊆ SL(2, ℝ).

              Equations
                @[simp]
                theorem SlashInvariantForm.coe_smul {Γ : Subgroup (GL (Fin 2) )} {k : } [Γ.HasDetOne] {α : Type u_2} [SMul α ] [IsScalarTower α ] (f : SlashInvariantForm Γ k) (n : α) :
                ⇑(n f) = n f
                @[simp]
                theorem SlashInvariantForm.smul_apply {Γ : Subgroup (GL (Fin 2) )} {k : } [Γ.HasDetOne] {α : Type u_2} [SMul α ] [IsScalarTower α ] (f : SlashInvariantForm Γ k) (n : α) (z : UpperHalfPlane) :
                (n f) z = n f z
                instance SlashInvariantForm.instSMulℝ {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] :

                Scalar multiplication by , valid without restrictions on the determinant.

                Equations
                  @[simp]
                  theorem SlashInvariantForm.coe_smulℝ {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] (f : SlashInvariantForm Γ k) (n : α) :
                  ⇑(n f) = n f
                  @[simp]
                  theorem SlashInvariantForm.smul_applyℝ {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [SMul α ] [SMul α ] [IsScalarTower α ] (f : SlashInvariantForm Γ k) (n : α) (z : UpperHalfPlane) :
                  (n f) z = n f z
                  @[simp]
                  theorem SlashInvariantForm.coe_neg {Γ : Subgroup (GL (Fin 2) )} {k : } (f : SlashInvariantForm Γ k) :
                  ⇑(-f) = -f
                  @[simp]
                  theorem SlashInvariantForm.neg_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f : SlashInvariantForm Γ k) (z : UpperHalfPlane) :
                  (-f) z = -f z
                  @[simp]
                  theorem SlashInvariantForm.coe_sub {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : SlashInvariantForm Γ k) :
                  ⇑(f - g) = f - g
                  @[simp]
                  theorem SlashInvariantForm.sub_apply {Γ : Subgroup (GL (Fin 2) )} {k : } (f g : SlashInvariantForm Γ k) (z : UpperHalfPlane) :
                  (f - g) z = f z - g z

                  Additive coercion from SlashInvariantForm to ℍ → ℂ.

                  Equations
                    Instances For
                      instance SlashInvariantForm.instModuleReal {Γ : Subgroup (GL (Fin 2) )} {k : } {α : Type u_2} [Semiring α] [Module α ] [Module α ] [IsScalarTower α ] :
                      Equations

                        The SlashInvariantForm corresponding to Function.const _ x.

                        Equations
                          Instances For
                            @[deprecated SlashInvariantForm.coe_const (since := "2025-12-06")]

                            Alias of SlashInvariantForm.coe_const.

                            The SlashInvariantForm corresponding to Function.const _ x.

                            Equations
                              Instances For
                                @[deprecated SlashInvariantForm.coe_constℝ (since := "2025-12-06")]

                                Alias of SlashInvariantForm.coe_constℝ.

                                def SlashInvariantForm.mul {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] {k₁ k₂ : } (f : SlashInvariantForm Γ k₁) (g : SlashInvariantForm Γ k₂) :
                                SlashInvariantForm Γ (k₁ + k₂)

                                The slash invariant form of weight k₁ + k₂ given by the product of two slash-invariant forms of weights k₁ and k₂.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem SlashInvariantForm.coe_mul {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] {k₁ k₂ : } (f : SlashInvariantForm Γ k₁) (g : SlashInvariantForm Γ k₂) :
                                    (f.mul g) = f * g
                                    def SlashInvariantForm.prod {ι : Type} {s : Finset ι} {k : ι} (m : ) (hm : m = is, k i) {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (f : (i : ι) → SlashInvariantForm Γ (k i)) :

                                    Given SlashInvariantForm's f i of weight k i for i : ι, define the form which as a function is a product of those indexed by s : Finset ι with weight m = ∑ i ∈ s, k i.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem SlashInvariantForm.coe_prod {ι : Type} {s : Finset ι} {k : ι} (m : ) (hm : m = is, k i) {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (f : (i : ι) → SlashInvariantForm Γ (k i)) :
                                        (prod m hm f) = is, (f i)
                                        def SlashInvariantForm.prodEqualWeights {ι : Type} {s : Finset ι} {k : } {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (f : ιSlashInvariantForm Γ k) :

                                        Given SlashInvariantForm's f i of weight k, define the form which as a function is a product of those indexed by s : Finset ι with weight #s * k.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem SlashInvariantForm.coe_prodEqualWeights {ι : Type} {s : Finset ι} {k : } {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (f : ιSlashInvariantForm Γ k) :
                                            (prodEqualWeights f) = is, (f i)
                                            @[simp]
                                            theorem SlashInvariantForm.coe_natCast {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (n : ) :
                                            n = n
                                            @[simp]
                                            theorem SlashInvariantForm.coe_intCast {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] (z : ) :
                                            z = z
                                            noncomputable def SlashInvariantForm.translate {F : Type u_1} {Γ : Subgroup (GL (Fin 2) )} {k : } [FunLike F UpperHalfPlane ] [SlashInvariantFormClass F Γ k] (f : F) (g : GL (Fin 2) ) :

                                            Translating a SlashInvariantForm by g : GL (Fin 2) ℝ, to obtain a new SlashInvariantForm of level g⁻¹ Γ g.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem SlashInvariantForm.coe_translate {F : Type u_1} {Γ : Subgroup (GL (Fin 2) )} {k : } [FunLike F UpperHalfPlane ] [SlashInvariantFormClass F Γ k] (f : F) (g : GL (Fin 2) ) :
                                                (translate f g) = SlashAction.map k g f