Bounded at infinity #
For complex-valued functions on the upper half plane, this file defines the filter
UpperHalfPlane.atImInfty required for defining when functions are bounded at infinity and zero at
infinity. Both of which are relevant for defining modular forms.
Filter for approaching iโ.
Equations
Instances For
A function f : โ โ ฮฑ is bounded at infinity if it is bounded along atImInfty.
Equations
Instances For
def
UpperHalfPlane.IsZeroAtImInfty
{ฮฑ : Type u_1}
[Zero ฮฑ]
[TopologicalSpace ฮฑ]
(f : UpperHalfPlane โ ฮฑ)
:
A function f : โ โ ฮฑ is zero at infinity it is zero along atImInfty.
Equations
Instances For
def
UpperHalfPlane.zeroAtImInftySubmodule
(ฮฑ : Type u_1)
[NormedField ฮฑ]
:
Submodule ฮฑ (UpperHalfPlane โ ฮฑ)
Module of functions that are zero at infinity.
Equations
Instances For
def
UpperHalfPlane.boundedAtImInftySubalgebra
(ฮฑ : Type u_1)
[NormedField ฮฑ]
:
Subalgebra ฮฑ (UpperHalfPlane โ ฮฑ)
Subalgebra of functions that are bounded at infinity.
Equations
Instances For
theorem
UpperHalfPlane.isBoundedAtImInfty_iff
{ฮฑ : Type u_1}
[Norm ฮฑ]
{f : UpperHalfPlane โ ฮฑ}
:
IsBoundedAtImInfty f โ โ (M : โ) (A : โ), โ (z : UpperHalfPlane), A โค z.im โ โf zโ โค M
theorem
UpperHalfPlane.isZeroAtImInfty_iff
{ฮฑ : Type u_1}
[SeminormedAddGroup ฮฑ]
{f : UpperHalfPlane โ ฮฑ}
:
theorem
UpperHalfPlane.IsZeroAtImInfty.isBoundedAtImInfty
{ฮฑ : Type u_1}
[SeminormedAddGroup ฮฑ]
{f : UpperHalfPlane โ ฮฑ}
(hf : IsZeroAtImInfty f)
:
theorem
UpperHalfPlane.tendsto_smul_atImInfty
{g : GL (Fin 2) โ}
(hg : โg 1 0 = 0)
:
Filter.Tendsto (fun (ฯ : UpperHalfPlane) => g โข ฯ) atImInfty atImInfty