| Name | Category | Theorems |
divIntMap π | CompOp | 4 mathmath: gammaSet_div_gcd_to_gammaSet10_bijection, eisSummand_of_gammaSet_eq_divIntMap, gammaSetDivGcdEquiv_eq, gammaSet_eq_gcd_mul_divIntMap
|
eisSummand π | CompOp | 12 mathmath: tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, e2Summand_summable, summable_eisSummand, summable_norm_eisSummand, eisSummand_of_gammaSet_eq_divIntMap, norm_le_tsum_norm, summable_prod_eisSummand, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, eisSummand_extension_differentiableOn, eisensteinSeries_tendstoLocallyUniformlyOn, eisSummand_SL2_apply, eisensteinSeries_tendstoLocallyUniformly
|
eisensteinSeriesSIF π | CompOp | 7 mathmath: isBoundedAtImInfty_eisensteinSeries_SIF, eisensteinSeries_SIF_apply, eisensteinSeriesSIF_apply, eisensteinSeries_tendstoLocallyUniformlyOn, eisensteinSeries_SIF_MDifferentiable, eisensteinSeriesSIF_mdifferentiable, isBoundedAtImInfty_eisensteinSeriesSIF
|
eisensteinSeries_SIF π | CompOp | β |
finGcdMap π | CompOp | β |
gammaSet π | CompOp | 11 mathmath: gammaSet_div_gcd_to_gammaSet10_bijection, gammaSetDivGcdSigmaEquiv_symm_eq, gammaSet_one_mem_iff, eisSummand_of_gammaSet_eq_divIntMap, pairwise_disjoint_gammaSet, eisensteinSeries_tendstoLocallyUniformlyOn, gammaSet_one_eq, gammaSet_one_const, gammaSetDivGcdEquiv_eq, mem_gammaSet_one, eisensteinSeries_tendstoLocallyUniformly
|
gammaSetDivGcdEquiv π | CompOp | 1 mathmath: gammaSetDivGcdEquiv_eq
|
gammaSetDivGcdSigmaEquiv π | CompOp | 1 mathmath: gammaSetDivGcdSigmaEquiv_symm_eq
|
gammaSetEquiv π | CompOp | β |
gammaSet_one_equiv π | CompOp | β |