Documentation Verification Report

Defs

πŸ“ Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/Defs.lean

Statistics

MetricCount
DefinitionsdivIntMap, eisSummand, eisensteinSeriesSIF, eisensteinSeries_SIF, finGcdMap, gammaSet, gammaSetDivGcdEquiv, gammaSetDivGcdSigmaEquiv, gammaSetEquiv, gammaSet_one_equiv, eisensteinSeries
11
TheoremseisSummand_SL2_apply, eisensteinSeriesSIF_apply, eisensteinSeries_SIF_apply, eisensteinSeries_slash_apply, finGcdMap_div, finGcdMap_smul, gammaSetDivGcdEquiv_eq, gammaSetDivGcdSigmaEquiv_symm_eq, gammaSet_div_gcd, gammaSet_div_gcd_to_gammaSet10_bijection, gammaSet_eq_gcd_mul_divIntMap, gammaSet_one_const, gammaSet_one_eq, gammaSet_one_mem_iff, mem_gammaSet_one, pairwise_disjoint_gammaSet, vecMulSL_gcd, vecMul_SL2_mem_gammaSet
18
Total29

EisensteinSeries

Definitions

NameCategoryTheorems
divIntMap πŸ“–CompOp
4 mathmath: gammaSet_div_gcd_to_gammaSet10_bijection, eisSummand_of_gammaSet_eq_divIntMap, gammaSetDivGcdEquiv_eq, gammaSet_eq_gcd_mul_divIntMap
eisSummand πŸ“–CompOp
12 mathmath: tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, e2Summand_summable, summable_eisSummand, summable_norm_eisSummand, eisSummand_of_gammaSet_eq_divIntMap, norm_le_tsum_norm, summable_prod_eisSummand, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, eisSummand_extension_differentiableOn, eisensteinSeries_tendstoLocallyUniformlyOn, eisSummand_SL2_apply, eisensteinSeries_tendstoLocallyUniformly
eisensteinSeriesSIF πŸ“–CompOp
7 mathmath: isBoundedAtImInfty_eisensteinSeries_SIF, eisensteinSeries_SIF_apply, eisensteinSeriesSIF_apply, eisensteinSeries_tendstoLocallyUniformlyOn, eisensteinSeries_SIF_MDifferentiable, eisensteinSeriesSIF_mdifferentiable, isBoundedAtImInfty_eisensteinSeriesSIF
eisensteinSeries_SIF πŸ“–CompOpβ€”
finGcdMap πŸ“–CompOpβ€”
gammaSet πŸ“–CompOp
11 mathmath: gammaSet_div_gcd_to_gammaSet10_bijection, gammaSetDivGcdSigmaEquiv_symm_eq, gammaSet_one_mem_iff, eisSummand_of_gammaSet_eq_divIntMap, pairwise_disjoint_gammaSet, eisensteinSeries_tendstoLocallyUniformlyOn, gammaSet_one_eq, gammaSet_one_const, gammaSetDivGcdEquiv_eq, mem_gammaSet_one, eisensteinSeries_tendstoLocallyUniformly
gammaSetDivGcdEquiv πŸ“–CompOp
1 mathmath: gammaSetDivGcdEquiv_eq
gammaSetDivGcdSigmaEquiv πŸ“–CompOp
1 mathmath: gammaSetDivGcdSigmaEquiv_symm_eq
gammaSetEquiv πŸ“–CompOpβ€”
gammaSet_one_equiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eisSummand_SL2_apply πŸ“–mathematicalβ€”eisSummand
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
UpperHalfPlane.SLAction
Ring.toIntAlgebra
Real
Real.instRing
Complex
Complex.instMul
DivInvMonoid.toZPow
Complex.instDivInvMonoid
UpperHalfPlane.denom
DFunLike.coe
MonoidHom
Real.commRing
Matrix.GeneralLinearGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.instMulOneClass
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
MonoidHom.instFunLike
Matrix.SpecialLinearGroup.toGL
Matrix.SpecialLinearGroup.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
UpperHalfPlane.coe
Matrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”UpperHalfPlane.im_pos
UpperHalfPlane.coe_specialLinearGroup_apply
UpperHalfPlane.specialLinearGroup_apply
Matrix.vec2_dotProduct
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
zpow_neg
div_zpow
inv_div
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.inv_congr
eq_intCast
RingHom.instRingHomClass
Int.cast_add
Int.cast_mul
UpperHalfPlane.denom_ne_zero
eisensteinSeriesSIF_apply πŸ“–mathematicalβ€”DFunLike.coe
SlashInvariantForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
UpperHalfPlane
Complex
SlashInvariantForm.funLike
eisensteinSeriesSIF
eisensteinSeries
β€”β€”
eisensteinSeries_SIF_apply πŸ“–mathematicalβ€”DFunLike.coe
SlashInvariantForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
UpperHalfPlane
Complex
SlashInvariantForm.funLike
eisensteinSeriesSIF
eisensteinSeries
β€”eisensteinSeriesSIF_apply
eisensteinSeries_slash_apply πŸ“–mathematicalβ€”SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
eisensteinSeries
Matrix.vecMul
ZMod
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Matrix.SpecialLinearGroup.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
β€”ModularForm.SL_slash_apply
zpow_neg
mul_inv_eq_iff_eq_mulβ‚€
zpow_ne_zero
UpperHalfPlane.denom_ne_zero
eisSummand_SL2_apply
tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instT2Space
mul_comm
Equiv.tsum_eq
finGcdMap_div πŸ“–mathematicalfinGcdMapIsCoprime
Int.instCommSemiring
Pi.instDiv
Pi.instNatCast
β€”isCoprime_div_gcd_div_gcd_of_gcd_ne_zero
finGcdMap_smul πŸ“–mathematicalfinGcdMapSubNegMonoid.toZSMul
Pi.subNegMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
β€”β€”
gammaSetDivGcdEquiv_eq πŸ“–mathematicalβ€”Set
Set.instMembership
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
gammaSetDivGcdEquiv
divIntMap
β€”β€”
gammaSetDivGcdSigmaEquiv_symm_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
gammaSetDivGcdSigmaEquiv
Set
Set.instMembership
β€”β€”
gammaSet_div_gcd πŸ“–β€”Set
Set.instMembership
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”β€”Fintype.complete
gammaSet_div_gcd_to_gammaSet10_bijection πŸ“–mathematicalβ€”Set.BijOn
divIntMap
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”finGcdMap_div
gammaSet_div_gcd
nsmul_eq_mul
Int.cast_natCast
Subsingleton.eq_zero
Unique.instSubsingleton
Int.isCoprime_iff_gcd_eq_one
mem_gammaSet_one
mul_one
mul_div_cancel_leftβ‚€
Int.instMulDivCancelClass
gammaSet_eq_gcd_mul_divIntMap πŸ“–mathematicalSet
Set.instMembership
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddMonoid.toNatSMul
Pi.addMonoid
Int.instAddMonoid
divIntMap
β€”CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
zero_smul
Fintype.complete
Int.cast_natCast
gammaSet_div_gcd
mul_div_cancel_leftβ‚€
Int.instMulDivCancelClass
gammaSet_one_const πŸ“–mathematicalβ€”gammaSetβ€”Unique.instSubsingleton
gammaSet_one_eq πŸ“–mathematicalβ€”gammaSet
setOf
β€”Subsingleton.eq_zero
Unique.instSubsingleton
gammaSet_one_mem_iff πŸ“–mathematicalβ€”Set
Set.instMembership
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”Subsingleton.eq_zero
Unique.instSubsingleton
mem_gammaSet_one πŸ“–mathematicalβ€”Set
Set.instMembership
gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
IsCoprime
Int.instCommSemiring
β€”gammaSet_one_mem_iff
Int.isCoprime_iff_gcd_eq_one
pairwise_disjoint_gammaSet πŸ“–mathematicalβ€”Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
gammaSet
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.not_disjoint_iff
vecMulSL_gcd πŸ“–mathematicalfinGcdMapMatrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Fin.fintype
Matrix
Matrix.det
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Fintype.complete
Matrix.smul_vecMul
IsScalarTower.right
nsmul_eq_mul
zsmul_eq_mul
Int.cast_natCast
mul_one
finGcdMap_smul
Int.isCoprime_iff_gcd_eq_one
IsCoprime.vecMulSL
finGcdMap_div
vecMul_SL2_mem_gammaSet πŸ“–mathematicalSet
Set.instMembership
gammaSet
Matrix.vecMul
ZMod
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Fin.fintype
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
Int.instCommRing
MulOneClass.toMulOne
Monoid.toMulOneClass
Matrix.SpecialLinearGroup.monoid
MonoidHom.instFunLike
Matrix.SpecialLinearGroup.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”RingHom.map_vecMul
eq_intCast
RingHom.instRingHomClass
vecMulSL_gcd

(root)

Definitions

NameCategoryTheorems
eisensteinSeries πŸ“–CompOp
6 mathmath: tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, EisensteinSeries.norm_le_tsum_norm, EisensteinSeries.eisensteinSeries_SIF_apply, EisensteinSeries.eisensteinSeriesSIF_apply, EisensteinSeries.eisensteinSeries_slash_apply, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly

---

← Back to Index