Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs

Eisenstein Series #

Main definitions #

References #

def EisensteinSeries.gammaSet (N r : ) (a : Fin 2ZMod N) :
Set (Fin 2)

The set of pairs of integers congruent to a mod N and with gcd equal to r.

Equations
    Instances For
      theorem EisensteinSeries.gammaSet_one_const (r : ) (a a' : Fin 2ZMod 1) :
      gammaSet 1 r a = gammaSet 1 r a'

      For level N = 1, the gamma sets are all equal.

      theorem EisensteinSeries.gammaSet_one_eq (r : ) (a : Fin 2ZMod 1) :
      gammaSet 1 r a = {v : Fin 2 | (v 0).gcd (v 1) = r}

      For level N = 1, the gamma sets simplify to only a gcd condition.

      theorem EisensteinSeries.gammaSet_one_mem_iff (r : ) (v : Fin 2) :
      v gammaSet 1 r 0 (v 0).gcd (v 1) = r
      def EisensteinSeries.gammaSet_one_equiv (r : ) (a a' : Fin 2ZMod 1) :
      (gammaSet 1 r a) (gammaSet 1 r a')

      For level N = 1, the gamma sets are all equivalent; this is the equivalence.

      Equations
        Instances For
          @[reducible, inline]

          The map from Fin 2 → ℤ sending ![a,b] to a.gcd b.

          Equations
            Instances For
              theorem EisensteinSeries.finGcdMap_div {r : } [NeZero r] (v : Fin 2) (hv : finGcdMap v = r) :
              IsCoprime ((v / r) 0) ((v / r) 1)
              theorem EisensteinSeries.finGcdMap_smul {r : } (a : ) {v : Fin 2} (hv : finGcdMap v = r) :
              finGcdMap (a v) = a.natAbs * r
              @[reducible, inline]
              abbrev EisensteinSeries.divIntMap (r : ) {m : } (v : Fin m) :
              Fin m

              An abbreviation of the map which divides an integer vector by an integer.

              Equations
                Instances For
                  theorem EisensteinSeries.gammaSet_div_gcd {r : } {v : Fin 2} (hv : v gammaSet 1 r 0) (i : Fin 2) :
                  r v i

                  The equivalence between gammaSet 1 r 0 and gammaSet 1 1 0 for non-zero r.

                  Equations
                    Instances For
                      @[simp]
                      theorem EisensteinSeries.gammaSetDivGcdEquiv_eq (r : ) [NeZero r] (v : (gammaSet 1 r 0)) :
                      ((gammaSetDivGcdEquiv r) v) = divIntMap r v

                      The equivalence between (Fin 2 → ℤ) and Σ n : ℕ, gammaSet 1 n 0) .

                      Equations
                        Instances For
                          theorem EisensteinSeries.vecMulSL_gcd {r : } [NeZero r] {v : Fin 2} (hab : finGcdMap v = r) (A : Matrix.SpecialLinearGroup (Fin 2) ) :

                          Right-multiplying a vector by a matrix in SL(2, ℤ) doesn't change its gcd.

                          Right-multiplying by γ ∈ SL(2, ℤ) sends gammaSet N a to gammaSet N (a ᵥ* γ).

                          The bijection between GammaSets given by multiplying by an element of SL(2, ℤ).

                          Equations
                            Instances For

                              The function on (Fin 2 → ℤ) whose sum defines an Eisenstein series.

                              Equations
                                Instances For
                                  def eisensteinSeries {N : } (a : Fin 2ZMod N) (k : ) (z : UpperHalfPlane) :

                                  An Eisenstein series of weight k and level Γ(N), with congruence condition a.

                                  Equations
                                    Instances For

                                      The SlashInvariantForm defined by an Eisenstein series of weight k : ℤ, level Γ(N), and congruence condition given by a : Fin 2 → ZMod N.

                                      Equations
                                        Instances For
                                          @[deprecated EisensteinSeries.eisensteinSeriesSIF (since := "2026-02-10")]

                                          Alias of EisensteinSeries.eisensteinSeriesSIF.


                                          The SlashInvariantForm defined by an Eisenstein series of weight k : ℤ, level Γ(N), and congruence condition given by a : Fin 2 → ZMod N.

                                          Equations
                                            Instances For
                                              @[deprecated EisensteinSeries.eisensteinSeriesSIF_apply (since := "2026-02-10")]

                                              Alias of EisensteinSeries.eisensteinSeriesSIF_apply.