Documentation Verification Report

IsBoundedAtImInfty

📁 Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/IsBoundedAtImInfty.lean

Statistics

MetricCount
DefinitionsIsBoundedAtImInfty
1
TheoremsisBoundedAtImInfty_eisensteinSeriesSIF, isBoundedAtImInfty_eisensteinSeries_SIF, norm_le_tsum_norm, summable_norm_eisSummand
4
Total5

EisensteinSeries

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedAtImInfty_eisensteinSeriesSIF 📖mathematicalUpperHalfPlane.IsBoundedAtImInfty
Complex
Complex.instNorm
SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
DFunLike.coe
SlashInvariantForm
Subgroup.map
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
SlashInvariantForm.funLike
eisensteinSeriesSIF
Nat.instAtLeastTwoHAddOfNat
Nat.ofNat_pos
Real.instIsOrderedRing
Real.instNontrivial
UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip
NeZero.pos
Nat.instCanonicallyOrderedAdd
eisensteinSeries_slash_apply
eisensteinSeriesSIF_apply
SlashInvariantForm.T_zpow_width_invariant
le_trans
norm_le_tsum_norm
Int.cast_ofNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Summable.tsum_le_tsum
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
norm_zpow
two_pos
Real.rpow_intCast
summand_bound_of_mem_verticalStrip
LT.lt.le
lt_trans
UpperHalfPlane.verticalStrip_anti_right
summable_norm_eisSummand
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_one_div_norm_rpow
isBoundedAtImInfty_eisensteinSeries_SIF 📖mathematicalUpperHalfPlane.IsBoundedAtImInfty
Complex
Complex.instNorm
SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
DFunLike.coe
SlashInvariantForm
Subgroup.map
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
SlashInvariantForm.funLike
eisensteinSeriesSIF
isBoundedAtImInfty_eisensteinSeriesSIF
norm_le_tsum_norm 📖mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
eisensteinSeries
tsum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
eisSummand
SummationFilter.unconditional
le_trans
norm_tsum_le_tsum_norm
Summable.subtype
instIsUniformAddGroupReal
Real.instCompleteSpace
summable_norm_eisSummand
Summable.tsum_subtype_le
Real.instIsOrderedAddMonoid
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
norm_nonneg
summable_norm_eisSummand 📖mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
Complex
Complex.instNorm
eisSummand
SummationFilter.unconditional
Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Summable.of_nonneg_of_le
norm_nonneg
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_one_div_norm_rpow
norm_zpow
Real.rpow_intCast
summand_bound
le_of_lt
Int.cast_pos
IsOrderedRing.toIsOrderedAddMonoid
Real.instIsOrderedRing
IsOrderedRing.toZeroLEOneClass
NeZero.one
Real.instNontrivial
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat

UpperHalfPlane

Definitions

NameCategoryTheorems
IsBoundedAtImInfty 📖MathDef
11 mathmath: OnePoint.isBoundedAt_iff_exists_SL2Z, OnePoint.isBoundedAt_iff_forall_SL2Z, isBoundedAtImInfty_iff, zero_form_isBoundedAtImInfty, OnePoint.isBoundedAt_iff, OnePoint.isBoundedAt_infty_iff, ModularFormClass.bdd_at_infty, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, IsZeroAtImInfty.isBoundedAtImInfty, ModularFormClass.bdd_at_infty_slash, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF

---

← Back to Index