Documentation Verification Report

LevelOne

πŸ“ Source: Mathlib/NumberTheory/ModularForms/LevelOne.lean

Statistics

MetricCount
Definitions0
TheoremslevelOne_neg_weight_rank_zero, levelOne_weight_zero_rank_one, levelOne_neg_weight_eq_zero, levelOne_weight_zero_const, one_mem_strictPeriods_SL2Z, exists_one_half_le_im_and_norm_le, wt_eq_zero_of_eq_const
7
Total7

ModularForm

Theorems

NameKindAssumesProvesValidatesDepends On
levelOne_neg_weight_rank_zero πŸ“–mathematicalβ€”Module.rank
Complex
ModularForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
Complex.instSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleComplexOfHasDetOneFinOfNatNatReal
Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL
Cardinal
Cardinal.instZero
β€”Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL
rank_eq_zero_iff
one_ne_zero
NeZero.charZero_one
Complex.instCharZero
one_smul
ModularFormClass.levelOne_neg_weight_eq_zero
ModularFormClass.modularForm
levelOne_weight_zero_rank_one πŸ“–mathematicalβ€”Module.rank
Complex
ModularForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
Complex.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
DirectSum.GradeZero.nonUnitalNonAssocSemiring
AddMonoid.toAddZeroClass
Int.instAddMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroup
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
DirectSum.GRing.toGSemiring
DirectSum.GCommRing.toGRing
Int.instAddCommMonoid
instGCommRing
Subgroup.instHasDetPlusMinusOneFinOfNatNatRealOfIsArithmetic
Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex
CongruenceSubgroup.instFiniteIndexGamma
instModuleComplexOfHasDetOneFinOfNatNatReal
Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL
Cardinal
Cardinal.instOne
β€”rank_eq_one
Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Subgroup.instHasDetPlusMinusOneFinOfNatNatRealOfIsArithmetic
Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex
CongruenceSubgroup.instFiniteIndexGamma
commRing_strongRankCondition
Complex.instNontrivial
NeZero.charZero_one
Complex.instCharZero
ModularFormClass.levelOne_weight_zero_const
ModularFormClass.modularForm
ext
mul_one

ModularFormClass

Theorems

NameKindAssumesProvesValidatesDepends On
levelOne_neg_weight_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
UpperHalfPlane
Complex
Pi.instZero
Complex.instZero
β€”LT.lt.le
SlashInvariantForm.wt_eq_zero_of_eq_const
toSlashInvariantFormClass
lt_irrefl
Function.const_zero
levelOne_weight_zero_const πŸ“–mathematicalβ€”DFunLike.coe
UpperHalfPlane
Complex
β€”le_rfl
one_mem_strictPeriods_SL2Z πŸ“–mathematicalβ€”Real
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Real.instRing
SetLike.instMembership
AddSubgroup.instSetLike
Subgroup.strictPeriods
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
CongruenceSubgroup.Gamma
Real.instOne
β€”CongruenceSubgroup.strictPeriods_Gamma
Nat.cast_one

SlashInvariantForm

Theorems

NameKindAssumesProvesValidatesDepends On
exists_one_half_le_im_and_norm_le πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
UpperHalfPlane.im
Norm.norm
Complex
Complex.instNorm
DFunLike.coe
UpperHalfPlane
β€”Nat.instAtLeastTwoHAddOfNat
ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le
slash_action_eqn_SL''
CongruenceSubgroup.mem_Gamma_one
norm_mul
NormedDivisionRing.toNormMulClass
norm_zpow
le_mul_of_one_le_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
one_le_zpow_of_nonposβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
norm_pos_iff
UpperHalfPlane.denom_ne_zero
wt_eq_zero_of_eq_const πŸ“–mathematicalDFunLike.coe
UpperHalfPlane
Complex
Complex.instZeroβ€”slash_action_eqn_SL''
CongruenceSubgroup.mem_Gamma_one
Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Complex.ofReal_zpow
zpow_eq_one_iff_rightβ‚€
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.le
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
mul_zpow
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
ModularGroup.denom_S

---

← Back to Index