Level one modular forms #
This file contains results specific to modular forms of level one, i.e. modular forms for
SL(2, β€).
TODO: Add finite-dimensionality of these spaces of modular forms.
theorem
SlashInvariantForm.exists_one_half_le_im_and_norm_le
{F : Type u_1}
[FunLike F UpperHalfPlane β]
{k : β€}
[SlashInvariantFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL β) (CongruenceSubgroup.Gamma 1)) k]
(hk : k β€ 0)
(f : F)
(Ο : UpperHalfPlane)
:
theorem
SlashInvariantForm.wt_eq_zero_of_eq_const
{F : Type u_1}
[FunLike F UpperHalfPlane β]
(k : β€)
[SlashInvariantFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL β) (CongruenceSubgroup.Gamma 1)) k]
{f : F}
{c : β}
(hf : βf = Function.const UpperHalfPlane c)
:
If a constant function is modular of weight k, then either k = 0, or the constant is 0.
theorem
ModularFormClass.levelOne_neg_weight_eq_zero
{F : Type u_1}
[FunLike F UpperHalfPlane β]
{k : β€}
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL β) (CongruenceSubgroup.Gamma 1)) k]
(hk : k < 0)
(f : F)
:
theorem
ModularFormClass.levelOne_weight_zero_const
{F : Type u_1}
[FunLike F UpperHalfPlane β]
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL β) (CongruenceSubgroup.Gamma 1)) 0]
(f : F)
:
β (c : β), βf = Function.const UpperHalfPlane c