Documentation Verification Report

Galois

📁 Source: Mathlib/NumberTheory/NumberField/Cyclotomic/Galois.lean

Statistics

MetricCount
DefinitionsgalEquivZMod
1
TheoremsgalEquivZMod_apply_of_pow_eq, galEquivZMod_restrictNormal_apply, galEquivZMod_smul_of_pow_eq
3
Total4

IsCyclotomicExtension.Rat

Definitions

NameCategoryTheorems
galEquivZMod 📖CompOp
3 mathmath: galEquivZMod_apply_of_pow_eq, galEquivZMod_restrictNormal_apply, galEquivZMod_smul_of_pow_eq

Theorems

NameKindAssumesProvesValidatesDepends On
galEquivZMod_apply_of_pow_eq 📖mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgEquiv
Rat.commSemiring
DivisionRing.toRatAlgebra
NumberField.to_charZero
AlgEquiv.instFunLike
ZMod.val
Units.val
ZMod
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
MulEquiv
Units
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
galEquivZMod
NumberField.to_charZero
IsPrimitiveRoot.eq_pow_of_pow_eq_one
instIsDomain
IsCyclotomicExtension.zeta_spec
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
pow_right_comm
galEquivZMod.eq_1
IsCyclotomicExtension.autEquivPow_apply
OneHom.toFun_eq_coe
MonoidHom.toOneHom_coe
IsPrimitiveRoot.autToPow_spec
galEquivZMod_restrictNormal_apply 📖mathematicalDFunLike.coe
MulEquiv
AlgEquiv
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
galEquivZMod
AlgEquiv.restrictNormal
Rat.instField
IsScalarTower.rat
DivisionRing.toRing
Ring.toAddCommGroup
Algebra.toModule
Semifield.toCommSemiring
IsGalois.to_normal
MonoidHom
Units.instMulOneClass
MonoidHom.instFunLike
ZMod.unitsMap
NumberField.to_charZero
IsCyclotomicExtension.zeta_spec
IsScalarTower.rat
IsGalois.to_normal
FaithfulSMul.algebraMap_injective
instFaithfulSMul_1
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
galEquivZMod_apply_of_pow_eq
IsPrimitiveRoot.pow_eq_one_iff_dvd
map_one
MonoidHomClass.toOneHomClass
AlgEquiv.restrictNormal_commutes
IsPrimitiveRoot.pow_eq_one
Units.ext_iff
ZMod.cast_id
ZMod.natCast_val
ZMod.natCast_eq_natCast_iff'
IsPrimitiveRoot.eq_orderOf
IsOfFinOrder.pow_inj_mod
IsPrimitiveRoot.isOfFinOrder
galEquivZMod_smul_of_pow_eq 📖mathematicalNumberField.RingOfIntegers
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AlgEquiv
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulSemiringAction.toDistribMulAction
NumberField.RingOfIntegers.instMulSemiringAction
AlgEquiv.applyMulSemiringAction
ZMod.val
Units.val
ZMod
ZMod.commRing
DFunLike.coe
MulEquiv
Units
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
galEquivZMod
NumberField.to_charZero
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
NumberField.RingOfIntegers.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.RingOfIntegers.instIsTorsionFree_2
galEquivZMod_apply_of_pow_eq
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
Subalgebra.coe_pow
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
OneMemClass.coe_one

---

← Back to Index