Galois theory for cyclotomic fields #
In this file, we study the Galois theory of cyclotomic extensions of ℚ.
Main definitions and results #
IsCyclotomicExtension.Rat.galEquivZMod: the isomorphism betweenGal(ℚ(ζₙ)/ℚ)and(ℤ/nℤ)ˣthat sendsσto the classasuch thatσ (ζₙ) = ζₙ ^ a.
@[reducible, inline]
noncomputable abbrev
IsCyclotomicExtension.Rat.galEquivZMod
(n : ℕ)
[NeZero n]
(K : Type u_1)
[Field K]
[NumberField K]
[hK : IsCyclotomicExtension {n} ℚ K]
:
The isomorphism between Gal(ℚ(ζₙ)/ℚ) and (ℤ/nℤ)ˣ that sends σ to the class a such that
σ (ζₙ) = ζₙ ^ a.
Equations
Instances For
theorem
IsCyclotomicExtension.Rat.galEquivZMod_apply_of_pow_eq
(n : ℕ)
[NeZero n]
(K : Type u_1)
[Field K]
[NumberField K]
[hK : IsCyclotomicExtension {n} ℚ K]
(σ : Gal(K/ℚ))
{x : K}
(hx : x ^ n = 1)
:
theorem
IsCyclotomicExtension.Rat.galEquivZMod_smul_of_pow_eq
(n : ℕ)
[NeZero n]
(K : Type u_1)
[Field K]
[NumberField K]
[hK : IsCyclotomicExtension {n} ℚ K]
(σ : Gal(K/ℚ))
{x : NumberField.RingOfIntegers K}
(hx : x ^ n = 1)
:
theorem
IsCyclotomicExtension.Rat.galEquivZMod_restrictNormal_apply
(n : ℕ)
[NeZero n]
(K : Type u_1)
[Field K]
[NumberField K]
[hK : IsCyclotomicExtension {n} ℚ K]
{m : ℕ}
[NeZero m]
(F : Type u_2)
[Field F]
[NumberField F]
[hF : IsCyclotomicExtension {m} ℚ F]
[Algebra F K]
[IsGalois ℚ F]
(h : m ∣ n)
(σ : Gal(K/ℚ))
:
Let m ∣ n. Then, the following diagram commutes:
Gal(ℚ(ζₙ)/ℚ) → (ℤ/nℤ)ˣ
↓ ↓
Gal(ℚ(ζₘ)/ℚ) → (ℤ/mℤ)ˣ
where the horizontal maps are galEquivZMod, the left map is the restriction map and the right map
is the natural map.