Documentation

Mathlib.NumberTheory.NumberField.Cyclotomic.Galois

Galois theory for cyclotomic fields #

In this file, we study the Galois theory of cyclotomic extensions of .

Main definitions and results #

@[reducible, inline]
noncomputable abbrev IsCyclotomicExtension.Rat.galEquivZMod (n : ) [NeZero n] (K : Type u_1) [Field K] [NumberField K] [hK : IsCyclotomicExtension {n} K] :
Gal(K/) ≃* (ZMod n)ˣ

The isomorphism between Gal(ℚ(ζₙ)/ℚ) and (ℤ/nℤ)ˣ that sends σ to the class a such that σ (ζₙ) = ζₙ ^ a.

Equations
    Instances For
      theorem IsCyclotomicExtension.Rat.galEquivZMod_apply_of_pow_eq (n : ) [NeZero n] (K : Type u_1) [Field K] [NumberField K] [hK : IsCyclotomicExtension {n} K] (σ : Gal(K/)) {x : K} (hx : x ^ n = 1) :
      σ x = x ^ (↑((galEquivZMod n K) σ)).val
      theorem IsCyclotomicExtension.Rat.galEquivZMod_smul_of_pow_eq (n : ) [NeZero n] (K : Type u_1) [Field K] [NumberField K] [hK : IsCyclotomicExtension {n} K] (σ : Gal(K/)) {x : NumberField.RingOfIntegers K} (hx : x ^ n = 1) :
      σ x = x ^ (↑((galEquivZMod n K) σ)).val
      theorem IsCyclotomicExtension.Rat.galEquivZMod_restrictNormal_apply (n : ) [NeZero n] (K : Type u_1) [Field K] [NumberField K] [hK : IsCyclotomicExtension {n} K] {m : } [NeZero m] (F : Type u_2) [Field F] [NumberField F] [hF : IsCyclotomicExtension {m} F] [Algebra F K] [IsGalois F] (h : m n) (σ : Gal(K/)) :

      Let m ∣ n. Then, the following diagram commutes: Gal(ℚ(ζₙ)/ℚ) → (ℤ/nℤ)ˣ ↓ ↓ Gal(ℚ(ζₘ)/ℚ) → (ℤ/mℤ)ˣ where the horizontal maps are galEquivZMod, the left map is the restriction map and the right map is the natural map.