Documentation Verification Report

Asymptotics

📁 Source: Mathlib/NumberTheory/NumberField/Ideal/Asymptotics.lean

Statistics

MetricCount
Definitions0
Theoremstendsto_norm_le_and_mk_eq_div_atTop, tendsto_norm_le_div_atTop, tendsto_norm_le_div_atTop₀
3
Total3

NumberField.Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_norm_le_and_mk_eq_div_atTop 📖mathematical—Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Nat.card
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Real.instLE
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
ClassGroup
NumberField.RingOfIntegers.instIsDomain
MonoidHom
MulOneClass.toMulOne
Submonoid.toMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupClassGroup
MonoidHom.instFunLike
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrRealPlaces
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
NumberField.Units.regulator
NumberField.Units.torsionOrder
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
—NumberField.RingOfIntegers.instIsDomain
RingHomInvPair.ids
fact_one_le_two_ennreal
Set.ext
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
Nat.cast_ne_zero
RCLike.charZero_rclike
Ideal.absNorm_ne_zero_of_nonZeroDivisors
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
NumberField.RingOfIntegers.instIsFractionRing
WithLp.instModuleFinite
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Complex.instFiniteDimensionalReal
WithLp.borelSpace
PiLp.borelSpace
Subtype.countable
Finite.to_countable
Real.borelSpace
instSecondCountableTopologyReal
Complex.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
PiLp.secondCountableTopology
IsScalarTower.right
Nat.card_congr
Nat.cast_mul
div_eq_mul_inv
mul_inv
mul_comm
mul_assoc
inv_mul_cancel_left₀
NumberField.Units.torsionOrder_ne_zero
inv_mul_cancel₀
mul_one
MeasureTheory.measureReal_def
UniformSpace.secondCountable_of_separable
MeasureTheory.MeasurePreserving.measure_preimage
NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed
MeasurableSet.nullMeasurableSet
NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne
NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne
ZLattice.covolume_comap
Prod.borelSpace
Pi.borelSpace
TopologicalSpace.instSecondCountableTopologyForallOfCountable
NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice
NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice
NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume
instIsAddHaarMeasureVolume
NumberField.mixedEmbedding.covolume_idealLattice
ENNReal.toReal_mul
ENNReal.toReal_pow
ENNReal.toReal_ofNat
ENNReal.coe_toReal
NNReal.coe_real_pi
ENNReal.toReal_ofReal
LT.lt.le
NumberField.Units.regulator_pos
FractionalIdeal.coe_mk0
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
FractionalIdeal.coeIdeal_absNorm
Rat.cast_natCast
inv_pow
inv_inv
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.one_pow
mul_inv_cancel_right₀
Filter.Tendsto.comp
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ZLattice.covolume.tendsto_card_le_div'
instDiscreteTopologySubtypeMemSubmoduleIntComap
instIsZLatticeComap
NumberField.mixedEmbedding.euclidean.instNontrivialMixedSpace
Set.mem_preimage
map_smul
SemilinearMapClass.toMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
ContinuousLinearEquiv.continuousSemilinearEquivClass
NumberField.mixedEmbedding.fundamentalCone.smul_mem_iff_mem
LT.lt.ne'
NumberField.to_charZero
NumberField.mixedEmbedding.norm_smul
NumberField.mixedEmbedding.euclidean.finrank
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
AntilipschitzWith.isBounded_preimage
RingHomIsometric.ids
ContinuousLinearEquiv.antilipschitz
NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne
Continuous.measurable
BorelSpace.opensMeasurable
ContinuousLinearEquiv.continuous
ContinuousLinearEquiv.coe_toHomeomorph
Homeomorph.preimage_frontier
measurableSet_frontier
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne
tendsto_const_nhds
Filter.Tendsto.atTop_mul_const'
Real.instIsStrictOrderedRing
Real.instArchimedean
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Ideal.absNorm_pos_of_nonZeroDivisors
Filter.tendsto_id
tendsto_norm_le_div_atTop 📖mathematical—Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Nat.card
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Real.instLE
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrRealPlaces
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
NumberField.Units.regulator
NumberField.classNumber
NumberField.Units.torsionOrder
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
—NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_norm_le_div_atTop₀
tendsto_inv_atTop_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal
Filter.Tendsto.congr'
add_zero
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Nat.le_floor_iff
Ideal.card_norm_le_eq_card_norm_le_add_one
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
NumberField.RingOfIntegers.instCharZero_1
NumberField.to_charZero
Nat.cast_add
Nat.cast_one
add_div
one_div
tendsto_norm_le_div_atTop₀ 📖mathematical—Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Nat.card
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Real.instLE
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrRealPlaces
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
NumberField.Units.regulator
NumberField.classNumber
NumberField.Units.torsionOrder
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
—NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
NumberField.RingOfIntegers.instIsDomain
Finset.sum_const
Finset.card_univ
nsmul_eq_mul
NumberField.classNumber.eq_1
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Filter.Tendsto.congr'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Real.instIsStrictOrderedRing
Nat.le_floor_iff
Ideal.finite_setOf_absNorm_le₀
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
NumberField.RingOfIntegers.instCharZero_1
NumberField.to_charZero
Finset.sum_congr
Nat.card_congr
Nat.card_eq_fintype_card
Fintype.subtype_card
Fintype.card.eq_1
Finset.card_eq_sum_card_fiberwise
Finset.mem_univ
Nat.cast_sum
Finset.sum_div
tendsto_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_norm_le_and_mk_eq_div_atTop

---

← Back to Index