Asymptotics on integral ideals of a number field #
We prove several asymptotics involving integral ideals of a number field.
Main results #
NumberField.ideal.tendsto_norm_le_and_mk_eq_div_atTop: asymptotics for the number of (nonzero) integral ideals of bounded norm in a fixed class of the class group.NumberField.ideal.tendsto_norm_le_div_atTop: asymptotics for the number of integral ideals of bounded norm.
theorem
NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop
(K : Type u_1)
[Field K]
[NumberField K]
(C : ClassGroup (RingOfIntegers K))
:
Filter.Tendsto
(fun (s : β) =>
β(Nat.card
{ I : β₯(nonZeroDivisors (Ideal (RingOfIntegers K))) // β(Ideal.absNorm βI) β€ s β§ ClassGroup.mk0 I = C }) / s)
Filter.atTop
(nhds
(2 ^ InfinitePlace.nrRealPlaces K * (2 * Real.pi) ^ InfinitePlace.nrComplexPlaces K * Units.regulator K / (β(Units.torsionOrder K) * β|β(discr K)|)))
The limit of the number of nonzero integral ideals of norm β€ s in a fixed class C of the
class group divided by s when s β +β.
theorem
NumberField.Ideal.tendsto_norm_le_div_atTopβ
(K : Type u_1)
[Field K]
[NumberField K]
:
Filter.Tendsto
(fun (s : β) => β(Nat.card { I : β₯(nonZeroDivisors (Ideal (RingOfIntegers K))) // β(Ideal.absNorm βI) β€ s }) / s)
Filter.atTop
(nhds
(2 ^ InfinitePlace.nrRealPlaces K * (2 * Real.pi) ^ InfinitePlace.nrComplexPlaces K * Units.regulator K * β(classNumber K) / (β(Units.torsionOrder K) * β|β(discr K)|)))
The limit of the number of nonzero integral ideals of norm β€ s divided by s when s β +β.
theorem
NumberField.Ideal.tendsto_norm_le_div_atTop
(K : Type u_1)
[Field K]
[NumberField K]
:
Filter.Tendsto (fun (s : β) => β(Nat.card { I : Ideal (RingOfIntegers K) // β(Ideal.absNorm I) β€ s }) / s) Filter.atTop
(nhds
(2 ^ InfinitePlace.nrRealPlaces K * (2 * Real.pi) ^ InfinitePlace.nrComplexPlaces K * Units.regulator K * β(classNumber K) / (β(Units.torsionOrder K) * β|β(discr K)|)))
The limit of the number of integral ideals of norm β€ s divided by s when s β +β.