Documentation

Mathlib.NumberTheory.NumberField.Units.Regulator

Regulator of a number field #

We define and prove basic results about the regulator of a number field K.

Main definitions and results #

Tags #

number field, units, regulator

An equiv between Fin (rank K), used to index the family of units, and {w // w ≠ wā‚€} the index of the logSpace.

Equations
    Instances For
      @[reducible, inline]
      abbrev NumberField.Units.IsMaxRank {K : Type u_1} [Field K] [NumberField K] (u : Fin (rank K) → (RingOfIntegers K)Ė£) :

      A family of units is of maximal rank if its image by logEmbedding is linearly independent over ā„.

      Equations
        Instances For

          The images by logEmbedding of a family of units of maximal rank form a basis of logSpace K.

          Equations
            Instances For

              A family of units is of maximal rank iff the index of the subgroup it generates has finite index.

              The regulator of a family of units of K.

              Equations
                Instances For
                  theorem NumberField.Units.abs_det_eq_abs_det {K : Type u_1} [Field K] [NumberField K] (u : Fin (rank K) → (RingOfIntegers K)Ė£) {w₁ wā‚‚ : InfinitePlace K} (e₁ : { w : InfinitePlace K // w ≠ w₁ } ā‰ƒ Fin (rank K)) (eā‚‚ : { w : InfinitePlace K // w ≠ wā‚‚ } ā‰ƒ Fin (rank K)) :
                  |(Matrix.of fun (i w : { w : InfinitePlace K // w ≠ w₁ }) => ↑(↑w).mult * Real.log (↑w ((algebraMap (RingOfIntegers K) K) ↑(u (e₁ i))))).det| = |(Matrix.of fun (i w : { w : InfinitePlace K // w ≠ wā‚‚ }) => ↑(↑w).mult * Real.log (↑w ((algebraMap (RingOfIntegers K) K) ↑(u (eā‚‚ i))))).det|

                  Let u : Fin (rank K) → (š“ž K)Ė£ be a family of units and let w₁ and wā‚‚ be two infinite places. Then, the two square matrices with entries (mult w * log w (u i))_i where w ≠ w_j for j = 1, 2 have the same determinant in absolute value.

                  theorem NumberField.Units.regOfFamily_eq_det {K : Type u_1} [Field K] [NumberField K] (u : Fin (rank K) → (RingOfIntegers K)Ė£) (w' : InfinitePlace K) (e : { w : InfinitePlace K // w ≠ w' } ā‰ƒ Fin (rank K)) :
                  regOfFamily u = |(Matrix.of fun (i w : { w : InfinitePlace K // w ≠ w' }) => ↑(↑w).mult * Real.log (↑w ((algebraMap (RingOfIntegers K) K) ↑(u (e i))))).det|

                  For any infinite place w', the regulator of the family u is equal to the absolute value of the determinant of the matrix with entries (mult w * log w (u i))_i for w ≠ w'.

                  theorem NumberField.Units.finrank_mul_regOfFamily_eq_det {K : Type u_1} [Field K] [NumberField K] (u : Fin (rank K) → (RingOfIntegers K)Ė£) (w' : InfinitePlace K) (e : { w : InfinitePlace K // w ≠ w' } ā‰ƒ Fin (rank K)) :
                  ↑(Module.finrank ā„š K) * regOfFamily u = |(Matrix.of fun (i w : InfinitePlace K) => if h : i = w' then ↑w.mult else ↑w.mult * Real.log (w ((algebraMap (RingOfIntegers K) K) ↑(u (e ⟨i, h⟩))))).det|

                  The degree of K times the regulator of the family u is equal to the absolute value of the determinant of the matrix whose columns are (mult w * log w (fundSystem K i))_i, w and the column (mult w)_w.

                  The regulator of a number field K.

                  Equations
                    Instances For
                      theorem NumberField.Units.regulator_eq_det (K : Type u_1) [Field K] [NumberField K] (w' : InfinitePlace K) (e : { w : InfinitePlace K // w ≠ w' } ā‰ƒ Fin (rank K)) :
                      regulator K = |(Matrix.of fun (i w : { w : InfinitePlace K // w ≠ w' }) => ↑(↑w).mult * Real.log (↑w ((algebraMap (RingOfIntegers K) K) ↑(fundSystem K (e i))))).det|

                      For any infinite place w', the regulator is equal to the absolute value of the determinant of the matrix with entries (mult w * log w (fundSystem K i))_i for w ≠ w'.

                      theorem NumberField.Units.finrank_mul_regulator_eq_det (K : Type u_1) [Field K] [NumberField K] (w' : InfinitePlace K) (e : { w : InfinitePlace K // w ≠ w' } ā‰ƒ Fin (rank K)) :
                      ↑(Module.finrank ā„š K) * regulator K = |(Matrix.of fun (i w : InfinitePlace K) => if h : i = w' then ↑w.mult else ↑w.mult * Real.log (w ((algebraMap (RingOfIntegers K) K) ↑(fundSystem K (e ⟨i, h⟩))))).det|

                      The degree of K times the regulator of K is equal to the absolute value of the determinant of the matrix whose columns are (mult w * log w (fundSystem K i))_i, w and the column (mult w)_w.

                      Let u and v be two families of units. Assume that the subgroup U generated by u and torsion K is contained in the subgroup V generated by v and torsion K. Then the ratio regOfFamily u / regOfFamily v is equal to the index of U inside V.

                      Let u be a family of units. Then the ratio regOfFamily u / regulator K is equal to the index of the subgroup generated by u and torsion K inside the group of units of K.