Documentation Verification Report

Ramification

πŸ“ Source: Mathlib/NumberTheory/NumberField/InfinitePlace/Ramification.lean

Statistics

MetricCount
DefinitionsIsUnramifiedAtInfinitePlaces, IsRamified, IsUnramified, IsUnramifiedIn, comap, instMulActionAlgEquiv, orbitRelEquiv
7
Theoremsbot, card_infinitePlace, id, isUnramified, top, trans, IsUnramifiedAtInfinitePlaces_of_odd_card_aut, IsUnramifiedAtInfinitePlaces_of_odd_finrank, coe_stabilizer_mk, isUnramified_mk_iff, mk_isRamified, mk_isUnramified, exists_comp_symm_eq_of_comp_eq, of_comap, comap_embedding, comap_embedding_conjugate, isComplex, isMixed_conjugate_embedding, isMixed_embedding, isReal, ne_conjugate, comap, isUnramified, comap, comap_algHom, eq, isUnmixed, isUnmixed_conjugate, of_restrictScalars, stabilizer_eq_bot, comap_eq, embedding_comp_eq_or_conjugate_embedding_comp_eq, isComplex_of_isComplex_under, isReal_of_isReal_over, mk_embedding_comp, card_eq_card_isUnramifiedIn, card_isUnramified, card_isUnramified_compl, card_mono, card_stabilizer, comap_apply, comap_comp, comap_embedding_of_isReal, comap_id, comap_mk, comap_mk_lift, comap_smul, comap_surjective, comp_of_comap_eq, even_card_aut_of_not_isUnramified, even_card_aut_of_not_isUnramifiedIn, even_finrank_of_not_isUnramified, even_finrank_of_not_isUnramifiedIn, even_nat_card_aut_of_not_isUnramified, exists_isConj_of_isRamified, exists_smul_eq_of_comap_eq, isComplex_smul_iff, isRamified_iff, isRamified_iff_card_stabilizer_eq_two, isRamified_mk_iff_isMixed, isReal_comap_iff, isReal_smul_iff, isUnramified, isUnramifiedIn, isUnramifiedIn_comap, isUnramified_iff, isUnramified_iff_card_stabilizer_eq_one, isUnramified_iff_mult_le, isUnramified_iff_stabilizer_eq_bot, isUnramified_mk_iff_forall_isConj, isUnramified_mk_iff_isUnmixed, isUnramified_self, isUnramified_smul_iff, mem_orbit_iff, mem_stabilizer_mk_iff, mult_comap_le, nat_card_stabilizer_eq_one_or_two, not_isUnramified_iff, not_isUnramified_iff_card_stabilizer_eq_two, orbitRelEquiv_apply_mk'', smul_apply, smul_coe_apply, smul_eq_comap, smul_mk
84
Total91

IsUnramifiedAtInfinitePlaces

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”IsUnramifiedAtInfinitePlacesβ€”NumberField.InfinitePlace.comap_surjective
NumberField.InfinitePlace.IsUnramified.comap
isUnramified
card_infinitePlace πŸ“–mathematicalβ€”Fintype.card
NumberField.InfinitePlace
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”NumberField.InfinitePlace.card_eq_card_isUnramifiedIn
Finset.filter_true_of_mem
NumberField.InfinitePlace.isUnramifiedIn
Finset.card_univ
Finset.card_eq_zero
Finset.compl_univ
MulZeroClass.zero_mul
add_zero
id πŸ“–mathematicalβ€”IsUnramifiedAtInfinitePlaces
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”NumberField.InfinitePlace.isUnramified_self
isUnramified πŸ“–mathematicalβ€”NumberField.InfinitePlace.IsUnramifiedβ€”β€”
top πŸ“–mathematicalβ€”IsUnramifiedAtInfinitePlacesβ€”NumberField.InfinitePlace.IsUnramified.of_restrictScalars
isUnramified
trans πŸ“–mathematicalβ€”IsUnramifiedAtInfinitePlacesβ€”isUnramified
IsScalarTower.algebraMap_eq

NumberField.ComplexEmbedding.IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
coe_stabilizer_mk πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjSetLike.coe
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
NumberField.InfinitePlace.instMulActionAlgEquiv
Set
Set.instInsert
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.instSingletonSet
β€”Set.ext
SetLike.mem_coe
NumberField.InfinitePlace.mem_stabilizer_mk_iff
Set.mem_insert_iff
Set.mem_singleton_iff
ext_iff
isUnramified_mk_iff πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjNumberField.InfinitePlace.IsUnramified
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AlgEquiv.aut
β€”ext_iff
NumberField.ComplexEmbedding.isConj_one_iff
not_iff_not
NumberField.InfinitePlace.not_isUnramified_iff
NumberField.InfinitePlace.not_isReal_iff_isComplex
NumberField.InfinitePlace.isReal_mk_iff
isReal_comp

NumberField.ComplexEmbedding.IsMixed

Theorems

NameKindAssumesProvesValidatesDepends On
mk_isRamified πŸ“–mathematicalNumberField.ComplexEmbedding.IsMixedNumberField.InfinitePlace.IsRamifiedβ€”NumberField.InfinitePlace.isRamified_mk_iff_isMixed

NumberField.ComplexEmbedding.IsUnmixed

Theorems

NameKindAssumesProvesValidatesDepends On
mk_isUnramified πŸ“–mathematicalNumberField.ComplexEmbedding.IsUnmixedNumberField.InfinitePlace.IsUnramifiedβ€”NumberField.InfinitePlace.isUnramified_mk_iff_isUnmixed

NumberField.InfinitePlace

Definitions

NameCategoryTheorems
IsRamified πŸ“–MathDef
4 mathmath: isRamified_iff, isRamified_iff_card_stabilizer_eq_two, NumberField.ComplexEmbedding.IsMixed.mk_isRamified, isRamified_mk_iff_isMixed
IsUnramified πŸ“–MathDef
19 mathmath: isUnramified_iff_card_stabilizer_eq_one, card_stabilizer, isUnramified, isUnramified_self, isUnramified_smul_iff, card_isUnramified, card_isUnramified_compl, isUnramified_mk_iff_forall_isConj, not_isUnramified_iff, isUnramified_iff, isUnramified_mk_iff_isUnmixed, not_isUnramified_iff_card_stabilizer_eq_two, IsUnramifiedAtInfinitePlaces.isUnramified, isUnramified_iff_stabilizer_eq_bot, isUnramifiedIn_comap, IsReal.isUnramified, isUnramified_iff_mult_le, NumberField.ComplexEmbedding.IsConj.isUnramified_mk_iff, NumberField.ComplexEmbedding.IsUnmixed.mk_isUnramified
IsUnramifiedIn πŸ“–MathDef
5 mathmath: isUnramifiedIn, card_eq_card_isUnramifiedIn, card_isUnramified, card_isUnramified_compl, isUnramifiedIn_comap
comap πŸ“–CompOp
26 mathmath: comap_mk, IsUnramified.comap_algHom, comap_apply, comap_comp, smul_eq_comap, orbitRelEquiv_apply_mk'', IsRamified.comap_embedding_conjugate, mult_comap_le, IsReal.comap, NumberField.IsCMField.equivInfinitePlace_apply, LiesOver.comap_eq, isRamified_iff, IsRamified.isReal, IsUnramified.eq, IsRamified.comap_embedding, not_isUnramified_iff, isUnramified_iff, isReal_comap_iff, comap_mk_lift, comap_smul, mem_orbit_iff, isUnramifiedIn_comap, isUnramified_iff_mult_le, comap_id, comap_surjective, IsUnramified.comap
instMulActionAlgEquiv πŸ“–CompOp
20 mathmath: nat_card_stabilizer_eq_one_or_two, isUnramified_iff_card_stabilizer_eq_one, exists_smul_eq_of_comap_eq, IsUnramified.stabilizer_eq_bot, card_stabilizer, smul_apply, NumberField.ComplexEmbedding.IsConj.coe_stabilizer_mk, smul_eq_comap, smul_mk, isUnramified_smul_iff, orbitRelEquiv_apply_mk'', smul_coe_apply, isComplex_smul_iff, isRamified_iff_card_stabilizer_eq_two, isReal_smul_iff, comap_smul, not_isUnramified_iff_card_stabilizer_eq_two, isUnramified_iff_stabilizer_eq_bot, mem_stabilizer_mk_iff, mem_orbit_iff
orbitRelEquiv πŸ“–CompOp
1 mathmath: orbitRelEquiv_apply_mk''

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_card_isUnramifiedIn πŸ“–mathematicalβ€”Fintype.card
NumberField.InfinitePlace
NumberField.InfinitePlace.fintype
Finset.card
Finset.filter
IsUnramifiedIn
Finset.univ
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
β€”card_isUnramified
card_isUnramified_compl
Finset.card_add_card_compl
card_isUnramified πŸ“–mathematicalβ€”Finset.card
NumberField.InfinitePlace
Finset.filter
IsUnramified
Finset.univ
NumberField.InfinitePlace.fintype
IsUnramifiedIn
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”IsGalois.card_aut_eq_finrank
NumberField.instFiniteDimensional
Finset.card_eq_sum_card_fiberwise
Finset.coe_filter
smul_eq_mul
Finset.sum_const
Finset.sum_congr
comap_surjective
Normal.toIsAlgebraic
IsGalois.to_normal
Finset.ext
Finset.mem_filter
Finset.mem_filter_univ
Set.mem_toFinset
mem_orbit_iff
isUnramifiedIn_comap
Nat.card_eq_fintype_card
MulAction.card_orbit_mul_card_stabilizer_eq_card_group
card_stabilizer
mul_one
Set.toFinset_card
card_isUnramified_compl πŸ“–mathematicalβ€”Finset.card
NumberField.InfinitePlace
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
NumberField.InfinitePlace.fintype
Finset.filter
IsUnramified
Finset.univ
IsUnramifiedIn
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”IsGalois.card_aut_eq_finrank
NumberField.instFiniteDimensional
Finset.card_eq_sum_card_fiberwise
Finset.compl_filter
Finset.coe_filter
smul_eq_mul
Finset.sum_const
Finset.sum_congr
comap_surjective
Normal.toIsAlgebraic
IsGalois.to_normal
Finset.ext
Finset.mem_filter
Finset.mem_filter_univ
Set.mem_toFinset
mem_orbit_iff
isUnramifiedIn_comap
Nat.card_eq_fintype_card
MulAction.card_orbit_mul_card_stabilizer_eq_card_group
card_stabilizer
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Set.toFinset_card
card_mono πŸ“–mathematicalβ€”Fintype.card
NumberField.InfinitePlace
NumberField.InfinitePlace.fintype
β€”Module.Finite.of_restrictScalars_finite
NumberField.to_charZero
IsScalarTower.rat
NumberField.to_finiteDimensional
Fintype.card_le_of_surjective
comap_surjective
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
card_stabilizer πŸ“–mathematicalβ€”Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
IsUnramified
β€”not_isUnramified_iff_card_stabilizer_eq_two
isUnramified_iff_card_stabilizer_eq_one
comap_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
comap
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
β€”β€”
comap_comp πŸ“–mathematicalβ€”comap
RingHom.comp
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
comap_embedding_of_isReal πŸ“–mathematicalIsReal
comap
embedding
RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
β€”mk_embedding
embedding_mk_eq_of_isReal
isReal_mk_iff
comap_id πŸ“–mathematicalβ€”comap
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
comap_mk πŸ“–mathematicalβ€”comap
RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
β€”β€”
comap_mk_lift πŸ“–mathematicalβ€”comap
NumberField.ComplexEmbedding.lift
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”NumberField.ComplexEmbedding.lift_comp_algebraMap
comap_smul πŸ“–mathematicalβ€”comap
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
RingHom.comp
Semiring.toNonAssocSemiring
RingHomClass.toRingHom
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”β€”
comap_surjective πŸ“–mathematicalβ€”NumberField.InfinitePlace
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”NumberField.ComplexEmbedding.lift_comp_algebraMap
mk_embedding
comp_of_comap_eq πŸ“–mathematicalcomapDFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
β€”β€”
even_card_aut_of_not_isUnramified πŸ“–mathematicalIsUnramifiedEven
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”even_nat_card_aut_of_not_isUnramified
even_card_aut_of_not_isUnramifiedIn πŸ“–mathematicalIsUnramifiedInEven
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”comap_surjective
Normal.toIsAlgebraic
IsGalois.to_normal
even_card_aut_of_not_isUnramified
isUnramifiedIn_comap
even_finrank_of_not_isUnramified πŸ“–mathematicalIsUnramifiedEven
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”even_card_aut_of_not_isUnramified
IsGalois.card_aut_eq_finrank
Even.zero
Module.finrank_of_not_finite
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
even_finrank_of_not_isUnramifiedIn πŸ“–mathematicalIsUnramifiedInEven
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”comap_surjective
Normal.toIsAlgebraic
IsGalois.to_normal
even_finrank_of_not_isUnramified
isUnramifiedIn_comap
even_nat_card_aut_of_not_isUnramified πŸ“–mathematicalIsUnramifiedEven
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”nonempty_fintype
Nat.instAtLeastTwoHAddOfNat
even_iff_two_dvd
not_isUnramified_iff_card_stabilizer_eq_two
Subgroup.card_subgroup_dvd_card
Nat.finite_of_card_ne_zero
Even.zero
exists_isConj_of_isRamified πŸ“–mathematicalIsRamifiedNumberField.ComplexEmbedding.IsConjβ€”Nat.card_eq_two_iff
isRamified_iff_card_stabilizer_eq_two
mem_stabilizer_mk_iff
exists_smul_eq_of_comap_eq πŸ“–mathematicalcomap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
β€”mk_eq_iff
mk_embedding
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
ComplexEmbedding.exists_comp_symm_eq_of_comp_eq
isComplex_smul_iff πŸ“–mathematicalβ€”IsComplex
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
β€”not_isReal_iff_isComplex
isReal_smul_iff
isRamified_iff πŸ“–mathematicalβ€”IsRamified
IsComplex
IsReal
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”not_isUnramified_iff
isRamified_iff_card_stabilizer_eq_two πŸ“–mathematicalβ€”IsRamified
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
β€”not_isUnramified_iff_card_stabilizer_eq_two
isRamified_mk_iff_isMixed πŸ“–mathematicalβ€”IsRamified
NumberField.ComplexEmbedding.IsMixed
β€”embedding_mk_eq
IsRamified.isMixed_embedding
star_star
IsRamified.isMixed_conjugate_embedding
isRamified_iff
isComplex_iff
isReal_iff
embedding_mk_eq_of_isReal
isReal_comap_iff πŸ“–mathematicalβ€”IsReal
comap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
mk_embedding
isReal_mk_iff
NumberField.ComplexEmbedding.isReal_comp_iff
isReal_smul_iff πŸ“–mathematicalβ€”IsReal
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
β€”isReal_comap_iff
isUnramified πŸ“–mathematicalβ€”IsUnramifiedβ€”IsUnramifiedAtInfinitePlaces.isUnramified
isUnramifiedIn πŸ“–mathematicalβ€”IsUnramifiedInβ€”isUnramified
isUnramifiedIn_comap πŸ“–mathematicalβ€”IsUnramifiedIn
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsUnramified
β€”exists_smul_eq_of_comap_eq
isUnramified_smul_iff
isUnramified_iff πŸ“–mathematicalβ€”IsUnramified
IsReal
IsComplex
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”not_iff_not
not_isUnramified_iff
not_isReal_iff_isComplex
not_isComplex_iff_isReal
isUnramified_iff_card_stabilizer_eq_one πŸ“–mathematicalβ€”IsUnramified
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
β€”isUnramified_iff_stabilizer_eq_bot
Subgroup.card_eq_one
isUnramified_iff_mult_le πŸ“–mathematicalβ€”IsUnramified
mult
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsUnramified.eq_1
le_antisymm_iff
mult_comap_le
isUnramified_iff_stabilizer_eq_bot πŸ“–mathematicalβ€”IsUnramified
MulAction.stabilizer
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
AlgEquiv.aut
instMulActionAlgEquiv
Bot.bot
Subgroup
Subgroup.instBot
β€”mk_embedding
isUnramified_mk_iff_forall_isConj
instIsConcreteLE
isUnramified_mk_iff_forall_isConj πŸ“–mathematicalβ€”IsUnramified
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AlgEquiv.aut
β€”NumberField.ComplexEmbedding.IsConj.isUnramified_mk_iff
IsScalarTower.of_algebraMap_eq'
RingHom.congr_fun
NumberField.ComplexEmbedding.isConj_one_iff
isReal_mk_iff
not_isReal_iff_isComplex
not_isUnramified_iff
IsScalarTower.right
IsGalois.to_normal
RingHom.ext
AlgHom.restrictNormal_commutes
isUnramified_mk_iff_isUnmixed πŸ“–mathematicalβ€”IsUnramified
NumberField.ComplexEmbedding.IsUnmixed
β€”embedding_mk_eq
IsUnramified.isUnmixed
star_star
IsUnramified.isUnmixed_conjugate
isUnramified_iff
isReal_iff
embedding_mk_eq_of_isReal
Iff.not
isReal_mk_iff
isUnramified_self πŸ“–mathematicalβ€”IsUnramified
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”β€”
isUnramified_smul_iff πŸ“–mathematicalβ€”IsUnramified
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
β€”isUnramified_iff
isReal_smul_iff
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
comap_smul
AlgHom.algHomClass
AlgEquiv.toAlgHom_toRingHom
AlgHom.comp_algebraMap
mem_orbit_iff πŸ“–mathematicalβ€”NumberField.InfinitePlace
Set
Set.instMembership
MulAction.orbit
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
comap
algebraMap
β€”mk_embedding
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
RingHom.ext
AlgEquiv.commutes
exists_smul_eq_of_comap_eq
mem_stabilizer_mk_iff πŸ“–mathematicalβ€”AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
NumberField.ComplexEmbedding.IsConj
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
NumberField.ComplexEmbedding.isConj_symm
NumberField.ComplexEmbedding.conjugate.eq_1
star_eq_iff_star_eq
AlgEquiv.ext
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
RingHom.congr_fun
mult_comap_le πŸ“–mathematicalβ€”mult
comap
β€”mult.eq_1
IsReal.comap
nat_card_stabilizer_eq_one_or_two πŸ“–mathematicalβ€”Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
β€”SetLike.coe_sort_coe
mk_embedding
Nat.card_eq_fintype_card
Fintype.card_ofFinset
Set.toFinset_singleton
Finset.insert_eq_of_mem
Finset.card_singleton
Finset.card_insert_of_notMem
Set.ext
instIsEmptyFalse
Fintype.card_unique
not_isUnramified_iff πŸ“–mathematicalβ€”IsUnramified
IsComplex
IsReal
comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsUnramified.eq_1
mult.eq_1
not_isReal_iff_isComplex
instIsEmptyFalse
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
IsReal.comap
not_isUnramified_iff_card_stabilizer_eq_two πŸ“–mathematicalβ€”IsUnramified
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
NumberField.InfinitePlace
instMulActionAlgEquiv
β€”isUnramified_iff_card_stabilizer_eq_one
nat_card_stabilizer_eq_one_or_two
orbitRelEquiv_apply_mk'' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NumberField.InfinitePlace
MulAction.orbitRel
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
instMulActionAlgEquiv
EquivLike.toFunLike
Equiv.instEquivLike
orbitRelEquiv
Quotient.mk''
comap
algebraMap
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
AlgEquiv.instFunLike
AlgEquiv.symm
β€”β€”
smul_coe_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
AlgEquiv
Semifield.toCommSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
AlgEquiv.instFunLike
AlgEquiv.symm
β€”Complex.instNontrivial
smul_eq_comap πŸ“–mathematicalβ€”AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
comap
RingHomClass.toRingHom
AlgEquiv.instFunLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”β€”
smul_mk πŸ“–mathematicalβ€”AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquiv
RingHom.comp
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
RingHomClass.toRingHom
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”β€”

NumberField.InfinitePlace.ComplexEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
exists_comp_symm_eq_of_comp_eq πŸ“–mathematicalRingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Complex.instSemiring
algebraMap
RingHomClass.toRingHom
AlgEquiv
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”NumberField.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq

NumberField.InfinitePlace.IsComplex

Theorems

NameKindAssumesProvesValidatesDepends On
of_comap πŸ“–β€”NumberField.InfinitePlace.IsComplex
NumberField.InfinitePlace.comap
β€”β€”NumberField.InfinitePlace.not_isReal_iff_isComplex
Function.mt
NumberField.InfinitePlace.IsReal.comap

NumberField.InfinitePlace.IsRamified

Theorems

NameKindAssumesProvesValidatesDepends On
comap_embedding πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.InfinitePlace.embedding
NumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instSemiring
β€”NumberField.InfinitePlace.comap_embedding_of_isReal
NumberField.InfinitePlace.isRamified_iff
comap_embedding_conjugate πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.InfinitePlace.embedding
NumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instSemiring
NumberField.ComplexEmbedding.conjugate
β€”NumberField.ComplexEmbedding.isReal_iff
NumberField.InfinitePlace.isReal_iff
NumberField.InfinitePlace.isRamified_iff
NumberField.InfinitePlace.comap_embedding_of_isReal
isComplex πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.InfinitePlace.IsComplexβ€”NumberField.InfinitePlace.isRamified_iff
isMixed_conjugate_embedding πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.ComplexEmbedding.IsMixed
NumberField.ComplexEmbedding.conjugate
NumberField.InfinitePlace.embedding
β€”NumberField.InfinitePlace.isReal_iff
isReal
comap_embedding_conjugate
NumberField.InfinitePlace.isComplex_iff
isComplex
isMixed_embedding πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.ComplexEmbedding.IsMixed
NumberField.InfinitePlace.embedding
β€”NumberField.InfinitePlace.isReal_iff
isReal
NumberField.InfinitePlace.comap_embedding_of_isReal
NumberField.InfinitePlace.isComplex_iff
isComplex
isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRamifiedNumberField.InfinitePlace.IsReal
NumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”NumberField.InfinitePlace.isRamified_iff
ne_conjugate πŸ“–β€”NumberField.InfinitePlace.IsRamifiedβ€”β€”NumberField.InfinitePlace.isComplex_iff
NumberField.InfinitePlace.isRamified_iff
Mathlib.Tactic.Contrapose.contraposeβ‚„
NumberField.InfinitePlace.mk_embedding
NumberField.InfinitePlace.mk_conjugate_eq

NumberField.InfinitePlace.IsReal

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalNumberField.InfinitePlace.IsRealNumberField.InfinitePlace.comapβ€”NumberField.InfinitePlace.mk_embedding
NumberField.InfinitePlace.isReal_mk_iff
NumberField.ComplexEmbedding.IsReal.comp
isUnramified πŸ“–mathematicalNumberField.InfinitePlace.IsRealNumberField.InfinitePlace.IsUnramifiedβ€”NumberField.InfinitePlace.isUnramified_iff

NumberField.InfinitePlace.IsUnramified

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedNumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”comap_algHom
comap_algHom πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedNumberField.InfinitePlace.comap
RingHomClass.toRingHom
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
NumberField.InfinitePlace.isUnramified_iff_mult_le
NumberField.InfinitePlace.comap_comp
AlgHom.comp_algebraMap
eq
NumberField.InfinitePlace.mult_comap_le
eq πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedNumberField.InfinitePlace.mult
NumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”β€”
isUnmixed πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedNumberField.ComplexEmbedding.IsUnmixed
NumberField.InfinitePlace.embedding
β€”NumberField.InfinitePlace.isReal_iff
NumberField.InfinitePlace.isUnramified_iff
NumberField.InfinitePlace.not_isComplex_iff_isReal
NumberField.InfinitePlace.mk_embedding
NumberField.InfinitePlace.isReal_mk_iff
isUnmixed_conjugate πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedNumberField.ComplexEmbedding.IsUnmixed
NumberField.ComplexEmbedding.conjugate
NumberField.InfinitePlace.embedding
β€”NumberField.InfinitePlace.isReal_iff
NumberField.InfinitePlace.isUnramified_iff
NumberField.InfinitePlace.not_isComplex_iff_isReal
NumberField.InfinitePlace.mk_embedding
of_restrictScalars πŸ“–β€”NumberField.InfinitePlace.IsUnramifiedβ€”β€”NumberField.InfinitePlace.isUnramified_iff_mult_le
eq
IsScalarTower.algebraMap_eq
NumberField.InfinitePlace.comap_comp
NumberField.InfinitePlace.mult_comap_le
stabilizer_eq_bot πŸ“–mathematicalNumberField.InfinitePlace.IsUnramifiedMulAction.stabilizer
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NumberField.InfinitePlace
AlgEquiv.aut
NumberField.InfinitePlace.instMulActionAlgEquiv
Bot.bot
Subgroup
Subgroup.instBot
β€”eq_bot_iff
NumberField.InfinitePlace.mk_embedding
SetLike.le_def
instIsConcreteLE
NumberField.ComplexEmbedding.IsConj.isUnramified_mk_iff

NumberField.InfinitePlace.LiesOver

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq πŸ“–mathematicalβ€”NumberField.InfinitePlace.comap
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Complex.instNontrivial
NumberField.InfinitePlace.ext
RingHom.injective
AbsoluteValue.ext_iff
AbsoluteValue.LiesOver.comp_eq
embedding_comp_eq_or_conjugate_embedding_comp_eq πŸ“–mathematicalβ€”RingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Complex.instSemiring
NumberField.InfinitePlace.embedding
algebraMap
NumberField.ComplexEmbedding.conjugate
β€”DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Complex.instNontrivial
NumberField.InfinitePlace.embedding_mk_eq
mk_embedding_comp
isComplex_of_isComplex_under πŸ“–β€”NumberField.InfinitePlace.IsComplexβ€”β€”DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Complex.instNontrivial
NumberField.InfinitePlace.isComplex_iff
NumberField.ComplexEmbedding.isReal_iff
RingHom.ext_iff
NumberField.InfinitePlace.embedding_mk_eq
NumberField.InfinitePlace.mk_embedding
comap_eq
star_star
isReal_of_isReal_over πŸ“–β€”NumberField.InfinitePlace.IsRealβ€”β€”DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Complex.instNontrivial
NumberField.InfinitePlace.not_isComplex_iff_isReal
isComplex_of_isComplex_under
mk_embedding_comp πŸ“–mathematicalβ€”RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.InfinitePlace.embedding
algebraMap
Semifield.toCommSemiring
β€”DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Complex.instNontrivial
NumberField.InfinitePlace.mk_embedding
comap_eq

(root)

Definitions

NameCategoryTheorems
IsUnramifiedAtInfinitePlaces πŸ“–CompData
6 mathmath: IsUnramifiedAtInfinitePlaces.trans, IsUnramifiedAtInfinitePlaces.bot, IsUnramifiedAtInfinitePlaces_of_odd_finrank, IsUnramifiedAtInfinitePlaces.id, IsUnramifiedAtInfinitePlaces.top, IsUnramifiedAtInfinitePlaces_of_odd_card_aut

Theorems

NameKindAssumesProvesValidatesDepends On
IsUnramifiedAtInfinitePlaces_of_odd_card_aut πŸ“–mathematicalOdd
Nat.instSemiring
Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsUnramifiedAtInfinitePlacesβ€”Nat.not_even_iff_odd
NumberField.InfinitePlace.even_card_aut_of_not_isUnramified
IsUnramifiedAtInfinitePlaces_of_odd_finrank πŸ“–mathematicalOdd
Nat.instSemiring
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
IsUnramifiedAtInfinitePlacesβ€”Nat.not_even_iff_odd
NumberField.InfinitePlace.even_finrank_of_not_isUnramified

---

← Back to Index