Ramification
π Source: Mathlib/NumberTheory/NumberField/InfinitePlace/Ramification.lean
Statistics
IsUnramifiedAtInfinitePlaces
Theorems
NumberField.ComplexEmbedding.IsConj
Theorems
NumberField.ComplexEmbedding.IsMixed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mk_isRamified π | mathematical | NumberField.ComplexEmbedding.IsMixed | NumberField.InfinitePlace.IsRamified | β | NumberField.InfinitePlace.isRamified_mk_iff_isMixed |
NumberField.ComplexEmbedding.IsUnmixed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mk_isUnramified π | mathematical | NumberField.ComplexEmbedding.IsUnmixed | NumberField.InfinitePlace.IsUnramified | β | NumberField.InfinitePlace.isUnramified_mk_iff_isUnmixed |
NumberField.InfinitePlace
Definitions
Theorems
NumberField.InfinitePlace.ComplexEmbedding
Theorems
NumberField.InfinitePlace.IsComplex
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_comap π | β | NumberField.InfinitePlace.IsComplexNumberField.InfinitePlace.comap | β | β | NumberField.InfinitePlace.not_isReal_iff_isComplexFunction.mtNumberField.InfinitePlace.IsReal.comap |
NumberField.InfinitePlace.IsRamified
Theorems
NumberField.InfinitePlace.IsReal
Theorems
NumberField.InfinitePlace.IsUnramified
Theorems
NumberField.InfinitePlace.LiesOver
Theorems
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
IsUnramifiedAtInfinitePlaces π | CompData |
Theorems
---