Documentation

Mathlib.NumberTheory.NumberField.InfinitePlace.Ramification

Ramification of infinite places of a number field #

This file studies the ramification of infinite places of a number field.

Main Definitions and Results #

Tags #

number field, infinite places, ramification

def NumberField.InfinitePlace.comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] (w : InfinitePlace K) (f : k โ†’+* K) :

The restriction of an infinite place along an embedding.

Equations
    Instances For
      @[simp]
      theorem NumberField.InfinitePlace.comap_mk {k : Type u_1} [Field k] {K : Type u_2} [Field K] (ฯ† : K โ†’+* โ„‚) (f : k โ†’+* K) :
      (mk ฯ†).comap f = mk (ฯ†.comp f)
      theorem NumberField.InfinitePlace.comap_comp {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] (w : InfinitePlace K) (f : F โ†’+* K) (g : k โ†’+* F) :
      w.comap (f.comp g) = (w.comap f).comap g
      @[simp]
      theorem NumberField.InfinitePlace.comap_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] (w : InfinitePlace K) (f : k โ†’+* K) (x : k) :
      (w.comap f) x = w (f x)
      theorem NumberField.InfinitePlace.comp_of_comap_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] {v : InfinitePlace k} {w : InfinitePlace K} {f : k โ†’+* K} (h : w.comap f = v) (x : k) :
      w (f x) = v x
      theorem NumberField.InfinitePlace.IsReal.comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] (f : k โ†’+* K) {w : InfinitePlace K} (hฯ† : w.IsReal) :
      theorem NumberField.InfinitePlace.IsComplex.of_comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] (f : k โ†’+* K) {w : InfinitePlace K} (hf : (w.comap f).IsComplex) :
      instance NumberField.InfinitePlace.instMulActionAlgEquiv {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] :

      The action of the Galois group on infinite places.

      Equations
        @[simp]
        theorem NumberField.InfinitePlace.smul_coe_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (ฯƒ : Gal(K/k)) (w : InfinitePlace K) (aโœ : K) :
        โ†‘(SMul.smul ฯƒ w) aโœ = โ†‘w (ฯƒ.symm aโœ)
        theorem NumberField.InfinitePlace.smul_eq_comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (ฯƒ : Gal(K/k)) (w : InfinitePlace K) :
        ฯƒ โ€ข w = w.comap โ†‘ฯƒ.symm
        @[simp]
        theorem NumberField.InfinitePlace.smul_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (ฯƒ : Gal(K/k)) (w : InfinitePlace K) (x : K) :
        (ฯƒ โ€ข w) x = w (ฯƒ.symm x)
        @[simp]
        theorem NumberField.InfinitePlace.smul_mk {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (ฯƒ : Gal(K/k)) (ฯ† : K โ†’+* โ„‚) :
        ฯƒ โ€ข mk ฯ† = mk (ฯ†.comp โ†‘ฯƒ.symm)
        theorem NumberField.InfinitePlace.comap_smul {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] [Algebra k K] (ฯƒ : Gal(K/k)) (w : InfinitePlace K) {f : F โ†’+* K} :
        (ฯƒ โ€ข w).comap f = w.comap ((โ†‘ฯƒ.symm).comp f)
        theorem NumberField.InfinitePlace.isReal_smul_iff {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] {ฯƒ : Gal(K/k)} {w : InfinitePlace K} :
        theorem NumberField.InfinitePlace.isComplex_smul_iff {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] {ฯƒ : Gal(K/k)} {w : InfinitePlace K} :
        theorem NumberField.InfinitePlace.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] (ฯ† ฯˆ : K โ†’+* โ„‚) (h : ฯ†.comp (algebraMap k K) = ฯˆ.comp (algebraMap k K)) :
        โˆƒ (ฯƒ : Gal(K/k)), ฯ†.comp โ†‘ฯƒ.symm = ฯˆ
        theorem NumberField.InfinitePlace.exists_smul_eq_of_comap_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] {w w' : InfinitePlace K} (h : w.comap (algebraMap k K) = w'.comap (algebraMap k K)) :
        โˆƒ (ฯƒ : Gal(K/k)), ฯƒ โ€ข w = w'

        The orbits of infinite places under the action of the Galois group are indexed by the infinite places of the base field.

        Equations
          Instances For
            def NumberField.InfinitePlace.IsUnramified (k : Type u_1) [Field k] {K : Type u_2} [Field K] [Algebra k K] (w : InfinitePlace K) :

            An infinite place is unramified in a field extension if the restriction has the same multiplicity.

            Equations
              Instances For
                @[reducible, inline]
                abbrev NumberField.InfinitePlace.IsRamified (k : Type u_1) [Field k] {K : Type u_2} [Field K] [Algebra k K] (w : InfinitePlace K) :

                An infinite place is ramified in a field extension if it is not unramified.

                Equations
                  Instances For
                    theorem NumberField.InfinitePlace.IsUnramified.comap_algHom {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] {w : InfinitePlace F} (h : IsUnramified k w) (f : K โ†’โ‚[k] F) :
                    IsUnramified k (w.comap โ†‘f)
                    theorem NumberField.InfinitePlace.IsUnramified.of_restrictScalars {k : Type u_1} [Field k] (K : Type u_2) [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] [Algebra K F] [IsScalarTower k K F] {w : InfinitePlace F} (h : IsUnramified k w) :
                    theorem NumberField.InfinitePlace.IsUnramified.comap {k : Type u_1} [Field k] (K : Type u_2) [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] [Algebra K F] [IsScalarTower k K F] {w : InfinitePlace F} (h : IsUnramified k w) :

                    An infinite place is not unramified (i.e. ramified) iff it is a complex place above a real place.

                    theorem NumberField.InfinitePlace.IsRamified.ne_conjugate {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] {wโ‚ wโ‚‚ : InfinitePlace K} (h : IsRamified k wโ‚‚) :
                    theorem NumberField.ComplexEmbedding.IsConj.isUnramified_mk_iff {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] {ฯƒ : Gal(K/k)} {ฯ† : K โ†’+* โ„‚} (h : IsConj ฯ† ฯƒ) :
                    theorem NumberField.InfinitePlace.isUnramified_mk_iff_forall_isConj {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] {ฯ† : K โ†’+* โ„‚} :
                    IsUnramified k (mk ฯ†) โ†” โˆ€ (ฯƒ : Gal(K/k)), ComplexEmbedding.IsConj ฯ† ฯƒ โ†’ ฯƒ = 1
                    theorem NumberField.InfinitePlace.mem_stabilizer_mk_iff {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (ฯ† : K โ†’+* โ„‚) (ฯƒ : Gal(K/k)) :
                    ฯƒ โˆˆ MulAction.stabilizer Gal(K/k) (mk ฯ†) โ†” ฯƒ = 1 โˆจ ComplexEmbedding.IsConj ฯ† ฯƒ
                    theorem NumberField.ComplexEmbedding.IsConj.coe_stabilizer_mk {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] {ฯƒ : Gal(K/k)} {ฯ† : K โ†’+* โ„‚} (h : IsConj ฯ† ฯƒ) :
                    โ†‘(MulAction.stabilizer Gal(K/k) (InfinitePlace.mk ฯ†)) = {1, ฯƒ}
                    theorem NumberField.InfinitePlace.exists_isConj_of_isRamified {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] {ฯ† : K โ†’+* โ„‚} (h : IsRamified k (mk ฯ†)) :
                    โˆƒ (ฯƒ : Gal(K/k)), ComplexEmbedding.IsConj ฯ† ฯƒ

                    An infinite place of the base field is unramified in a field extension if every infinite place over it is unramified.

                    Equations
                      Instances For
                        class IsUnramifiedAtInfinitePlaces (k : Type u_1) [Field k] (K : Type u_2) [Field K] [Algebra k K] :

                        A field extension is unramified at infinite places if every infinite place is unramified.

                        Instances
                          theorem NumberField.InfinitePlace.LiesOver.comap_eq {K : Type u_4} {L : Type u_5} [Field K] [Field L] [Algebra K L] (w : InfinitePlace L) (v : InfinitePlace K) [(โ†‘w).LiesOver โ†‘v] :
                          w.comap (algebraMap K L) = v
                          theorem NumberField.InfinitePlace.LiesOver.mk_embedding_comp {K : Type u_4} {L : Type u_5} [Field K] [Field L] [Algebra K L] (w : InfinitePlace L) (v : InfinitePlace K) [(โ†‘w).LiesOver โ†‘v] :

                          If w : InfinitePlace L lies above v : InfinitePlace K, then either w.embedding extends v.embedding as complex embeddings, or conjugate w.embedding extends v.embedding.

                          theorem NumberField.InfinitePlace.LiesOver.isComplex_of_isComplex_under {K : Type u_4} {L : Type u_5} [Field K] [Field L] [Algebra K L] (w : InfinitePlace L) {v : InfinitePlace K} [(โ†‘w).LiesOver โ†‘v] (hv : v.IsComplex) :

                          If w : InfinitePlace L lies above v : InfinitePlace K and v is complex, then so is w.

                          theorem NumberField.InfinitePlace.LiesOver.isReal_of_isReal_over {K : Type u_4} {L : Type u_5} [Field K] [Field L] [Algebra K L] (w : InfinitePlace L) {v : InfinitePlace K} [(โ†‘w).LiesOver โ†‘v] (hw : w.IsReal) :

                          If w : InfinitePlace L lies above v : InfinitePlace K and w is real, then so is v.