Documentation Verification Report

PadicIntegers

πŸ“ Source: Mathlib/NumberTheory/Padics/PadicIntegers.lean

Statistics

MetricCount
DefinitionsPadicInt, ringHom, algebra, instCoePadic, instCommRing, instInhabited, instMetricSpace, instNorm, instNormedCommRing, inv, mkUnits, ofIntSeq, subring, unitCoeff, valuation, Β«termβ„€_[_]Β»
16
TheoremsringHom_apply, algebraMap_apply, coe_add, coe_eq_zero, coe_intCast, coe_mul, coe_natCast, coe_ne_zero, coe_neg, coe_one, coe_pow, coe_sub, coe_sum, coe_zero, complete, completeSpace, exists_pow_neg_lt, exists_pow_neg_lt_rat, ext, ideal_eq_span_pow_p, instCharZero, instIsAdicCompleteMaximalIdeal, instIsDiscreteValuationRing, instIsDomain, instIsLocalRing, instIsUltrametricDist, instNormMulClass, instNormOneClass, intCast_eq, inv_mul, irreducible_p, isFractionRing, isOpenEmbedding_coe, isUnit_den, isUnit_iff, le_valuation_add, maximalIdeal_eq_span_p, mem_nonunits, mem_span_pow_iff_le_valuation, mem_subring_iff, mkUnits_eq, mk_coe, mk_zero, mul_inv, nonarchimedean, norm_add_eq_max_of_ne, norm_def, norm_eq_of_norm_add_lt_left, norm_eq_of_norm_add_lt_right, norm_eq_padic_norm, norm_eq_zpow_neg_valuation, norm_intCast_eq_one_iff, norm_intCast_eq_padic_norm, norm_intCast_lt_one_iff, norm_int_le_pow_iff_dvd, norm_int_lt_one_iff_dvd, norm_le_one, norm_le_pow_iff_le_valuation, norm_le_pow_iff_mem_span_pow, norm_le_pow_iff_norm_lt_pow_add_one, norm_lt_one_add, norm_lt_one_iff_dvd, norm_lt_one_mul, norm_lt_pow_iff_norm_le_pow_sub_one, norm_natCast_eq_one_iff, norm_natCast_lt_one_iff, norm_natCast_p_sub_one, norm_p, norm_p_pow, norm_units, not_isUnit_iff, one_le_norm_iff, p_nonunit, padic_norm_e_of_padicInt, pow_p_dvd_int_iff, prime_p, unitCoeff_coe, unitCoeff_spec, val_mkUnits, valuation_coe, valuation_coe_nonneg, valuation_mul, valuation_one, valuation_p, valuation_p_pow_mul, valuation_pow, valuation_zero
87
Total103

PadicInt

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
2 mathmath: algebraMap_apply, isFractionRing
instCoePadic πŸ“–CompOpβ€”
instCommRing πŸ“–CompOp
85 mathmath: coe_sub, lift_sub_val_mem_span, coe_zero, val_mkUnits, appr_spec, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, sub_zmodRepr_mem, cyclotomicCharacter.toZModPow, norm_p_pow, coe_eq_zero, mahlerTerm_apply, coe_sum, norm_units, irreducible_p, maximalIdeal_eq_span_p, instIsDiscreteValuationRing, algebraMap_apply, instIsLocalRing, exists_mem_range, ext_of_toZModPow, mahlerSeries_apply, WittVector.fromPadicInt_comp_toPadicInt, continuous_choose, coe_addChar_of_value_at_one, instIsDomain, norm_ascPochhammer_le, coe_adicCompletionIntegersEquiv_symm_apply, toZModPow_ofIntSeq_of_pow_dvd_sub, coe_one, Coe.ringHom_apply, coe_natCast, WittVector.fromPadicInt_comp_toPadicInt_ext, valuation_pow, coe_adicCompletionIntegersEquiv_apply, mahlerTerm_one, padic_polynomial_dist, isFractionRing, zmodRepr_spec, mk_zero, toZMod_eq_residueField_comp_residue, zmod_cast_comp_toZModPow, isUnit_iff, toZModPow_eq_iff_ext, mem_span_pow_iff_le_valuation, isUnit_den, norm_le_pow_iff_mem_span_pow, ker_toZModPow, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, instIsAdicCompleteMaximalIdeal, not_isUnit_iff, WittVector.toPadicInt_comp_fromPadicInt_ext, WittVector.toPadicInt_comp_fromPadicInt, valuation_p_pow_mul, cyclotomicCharacter.toZModPow_toFun, pow_p_dvd_int_iff, continuous_multichoose, lift_spec, p_nonunit, cyclotomicCharacter.spec, mahlerEquiv_apply, mkUnits_eq, coe_neg, ker_toZMod, mahler_apply, ideal_eq_span_pow_p, mahlerEquiv_symm_apply, mem_nonunits, unitCoeff_spec, coe_mul, coe_add, intCast_eq, unitCoeff_coe, coe_dpow_eq, coe_intCast, cast_toZModPow, prime_p, WittVector.zmodEquivTrunc_compat, val_toZMod_eq_zmodRepr, cyclotomicCharacter.continuous, existsUnique_mem_range, toZMod_spec, instCharZero, cyclotomicCharacter.toFun_spec, lift_self, coe_pow
instInhabited πŸ“–CompOpβ€”
instMetricSpace πŸ“–CompOp
2 mathmath: completeSpace, instIsUltrametricDist
instNorm πŸ“–CompOp
40 mathmath: norm_int_lt_one_iff_dvd, norm_intCast_eq_padic_norm, norm_intCast_lt_one_iff, nonarchimedean, norm_p_pow, padic_norm_e_of_padicInt, norm_units, norm_lt_one_iff_dvd, exists_mem_range_of_norm_rat_le_one, norm_natCast_zmodRepr_eq_one_iff_ne, norm_eq_zpow_neg_valuation, norm_ascPochhammer_le, norm_int_le_pow_iff_dvd, padic_polynomial_dist, one_le_norm_iff, norm_natCast_zmodRepr_eq_one_iff, isUnit_iff, limNthHom_spec, norm_le_pow_iff_norm_lt_pow_add_one, norm_intCast_eq_one_iff, norm_le_pow_iff_le_valuation, norm_le_pow_iff_mem_span_pow, norm_eq_padic_norm, norm_natCast_zmodRepr_eq, instNormOneClass, not_isUnit_iff, norm_sub_modPart, norm_p, norm_lt_pow_iff_norm_le_pow_sub_one, instNormMulClass, norm_sub_zmodRepr_lt_one, norm_add_eq_max_of_ne, norm_def, norm_natCast_eq_one_iff, norm_le_one, mem_nonunits, complete, norm_natCast_zmodRepr_eq_iff, norm_natCast_p_sub_one, norm_natCast_lt_one_iff
instNormedCommRing πŸ“–CompOp
98 mathmath: lift_sub_val_mem_span, norm_int_lt_one_iff_dvd, norm_intCast_eq_padic_norm, valuation_p, hensels_lemma, appr_spec, valuation_zero, norm_intCast_lt_one_iff, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, norm_mahlerTerm, sub_zmodRepr_mem, nonarchimedean, norm_p_pow, zmodRepr_mul, mahlerTerm_apply, irreducible_p, le_valuation_add, maximalIdeal_eq_span_p, norm_lt_one_iff_dvd, mul_inv, exists_mem_range, exists_mem_range_of_norm_rat_le_one, inv_mul, fwdDiff_tendsto_zero, compactSpace, mahlerSeries_apply, norm_natCast_zmodRepr_eq_one_iff_ne, continuous_choose, coe_addChar_of_value_at_one, mahlerSeries_apply_nat, norm_ascPochhammer_le, coe_adicCompletionIntegersEquiv_symm_apply, norm_lt_one_mul, norm_int_le_pow_iff_dvd, denseRange_natCast, norm_lt_one_add, mahler_natCast_eq, coe_adicCompletionIntegersEquiv_apply, mahlerTerm_one, padic_polynomial_dist, zmodRepr_spec, norm_natCast_zmodRepr_eq_one_iff, limNthHom_spec, continuous_addChar_of_value_at_one, continuousAddCharEquiv_of_norm_mul_symm_apply, mem_span_pow_iff_le_valuation, hasSum_mahlerSeries, norm_intCast_eq_one_iff, isUnit_den, norm_le_pow_iff_mem_span_pow, zmodRepr_natCast, valuation_one, norm_natCast_zmodRepr_eq, zmodRepr_zero, ker_toZModPow, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, hasSum_mahler, instNormOneClass, limNthHom_add, instIsAdicCompleteMaximalIdeal, totallyBounded_univ, norm_sub_modPart, norm_p, valuation_p_pow_mul, fwdDiff_mahlerSeries, zmodRepr_natCast_zmodRepr, pow_p_dvd_int_iff, continuous_multichoose, p_nonunit, instNormMulClass, limNthHom_one, norm_sub_zmodRepr_lt_one, mahlerEquiv_apply, norm_add_eq_max_of_ne, norm_mahler_eq, continuousAddCharEquiv_symm_apply, norm_natCast_eq_one_iff, mahler_apply, ideal_eq_span_pow_p, limNthHom_mul, mahlerEquiv_symm_apply, complete, denseRange_intCast, limNthHom_zero, unitCoeff_spec, norm_natCast_zmodRepr_eq_iff, instIsAddTorsionFree, coe_dpow_eq, norm_natCast_p_sub_one, prime_p, zmodRepr_natCast_of_lt, cyclotomicCharacter.continuous, existsUnique_mem_range, toZMod_spec, zmodRepr_eq_zero_iff_dvd, valuation_mul, addChar_of_value_at_one_def, norm_natCast_lt_one_iff
inv πŸ“–CompOp
2 mathmath: mul_inv, inv_mul
mkUnits πŸ“–CompOp
2 mathmath: val_mkUnits, mkUnits_eq
ofIntSeq πŸ“–CompOp
2 mathmath: toZModPow_ofIntSeq_of_pow_dvd_sub, cyclotomicCharacter.toFun_apply
subring πŸ“–CompOp
3 mathmath: mem_subring_iff, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, Coe.ringHom_apply
unitCoeff πŸ“–CompOp
2 mathmath: unitCoeff_spec, unitCoeff_coe
valuation πŸ“–CompOp
13 mathmath: valuation_p, valuation_zero, le_valuation_add, norm_eq_zpow_neg_valuation, valuation_pow, mem_span_pow_iff_le_valuation, norm_le_pow_iff_le_valuation, valuation_one, valuation_coe, valuation_p_pow_mul, unitCoeff_spec, unitCoeff_coe, valuation_mul

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PadicInt
Padic
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
RingHom.instFunLike
algebraMap
algebra
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
β€”β€”
coe_add πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Padic.instAdd
β€”β€”
coe_eq_zero πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
Padic.instZero
PadicInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
β€”coe_zero
coe_intCast πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Padic.instRing
β€”β€”
coe_mul πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Padic.instMul
β€”β€”
coe_natCast πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Padic.instRing
β€”β€”
coe_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
coe_eq_zero
coe_neg πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
instCommRing
Padic.instNeg
β€”β€”
coe_one πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Padic.instOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
β€”β€”
coe_sub πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Padic.instSub
β€”β€”
coe_sum πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
Finset.sum
PadicInt
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Padic.normedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Finset.sum_congr
coe_zero πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
PadicInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Padic.instZero
β€”β€”
complete πŸ“–mathematicalβ€”CauSeq.IsComplete
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
PadicInt
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Norm.norm
instNorm
NormMulClass.isAbsoluteValue_norm
instNormMulClass
β€”Real.instIsStrictOrderedRing
NormMulClass.isAbsoluteValue_norm
instNormMulClass
Padic.isAbsoluteValue
Padic.complete
Padic.padicNormE_lim_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
norm_le_one
CauSeq.equiv_lim
completeSpace πŸ“–mathematicalβ€”CompleteSpace
PadicInt
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
β€”isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_norm
continuous_const
IsClosed.completeSpace_coe
Padic.instCompleteSpace
exists_pow_neg_lt πŸ“–mathematicalReal
Real.instLT
Real.instZero
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
β€”exists_nat_gt
Real.instIsStrictOrderedRing
Real.instArchimedean
inv_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zpow_pos
Real.instZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.pos
Fact.out
zpow_neg
inv_inv
zpow_natCast
lt_of_lt_of_le
le_of_lt
Nat.Prime.one_lt
exists_pow_neg_lt_rat πŸ“–β€”β€”β€”β€”exists_pow_neg_lt
Nat.cast_zero
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toCharZero
Rat.cast_natCast
ext πŸ“–β€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
β€”β€”β€”
ideal_eq_span_pow_p πŸ“–mathematicalβ€”Ideal.span
PadicInt
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”IsDiscreteValuationRing.ideal_eq_span_pow_irreducible
instIsDomain
instIsDiscreteValuationRing
irreducible_p
instCharZero πŸ“–mathematicalβ€”CharZero
PadicInt
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”Nat.cast_injective
Padic.instCharZero
instIsAdicCompleteMaximalIdeal πŸ“–mathematicalβ€”IsAdicComplete
PadicInt
instCommRing
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
instIsLocalRing
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Semiring.toModule
CommSemiring.toSemiring
β€”instIsLocalRing
IsDiscreteValuationRing.instIsHausdorffMaximalIdeal
instIsDomain
instIsDiscreteValuationRing
IsScalarTower.left
IsScalarTower.right
maximalIdeal_eq_span_p
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
mul_one
Real.instIsStrictOrderedRing
exists_pow_neg_lt
lt_of_le_of_lt
neg_sub
norm_neg
NormMulClass.isAbsoluteValue_norm
instNormMulClass
complete
zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.pos
Fact.out
CauSeq.equiv_def₃
CauSeq.equiv_lim
LT.lt.le
le_rfl
nonarchimedean
LE.le.trans
sub_add_sub_cancel
max_le_iff
instIsDiscreteValuationRing πŸ“–mathematicalβ€”IsDiscreteValuationRing
PadicInt
instCommRing
instIsDomain
β€”IsDiscreteValuationRing.ofHasUnitMulPowIrreducibleFactorization
instIsDomain
irreducible_p
mul_comm
unitCoeff_spec
instIsDomain πŸ“–mathematicalβ€”IsDomain
PadicInt
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”NoZeroDivisors.to_isDomain
instNontrivialOfCharZero
instCharZero
NormMulClass.toNoZeroDivisors
instNormMulClass
instIsLocalRing πŸ“–mathematicalβ€”IsLocalRing
PadicInt
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”IsLocalRing.of_nonunits_add
instNontrivialOfCharZero
instCharZero
norm_lt_one_add
instIsUltrametricDist πŸ“–mathematicalβ€”IsUltrametricDist
PadicInt
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpace
β€”IsUltrametricDist.subtype
Padic.instIsUltrametricDist
instNormMulClass πŸ“–mathematicalβ€”NormMulClass
PadicInt
instNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”norm_mul
NormedDivisionRing.toNormMulClass
instNormOneClass πŸ“–mathematicalβ€”NormOneClass
PadicInt
instNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”norm_def
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
intCast_eq πŸ“–mathematicalβ€”PadicInt
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”instCharZero
inv_mul πŸ“–mathematicalNorm.norm
PadicInt
instNorm
Real
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
inv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”mul_comm
mul_inv
irreducible_p πŸ“–mathematicalβ€”Irreducible
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”Prime.irreducible
IsDomain.toIsCancelMulZero
instIsDomain
prime_p
isFractionRing πŸ“–mathematicalβ€”IsFractionRing
PadicInt
CommRing.toCommSemiring
instCommRing
Padic
Semifield.toCommSemiring
Field.toSemifield
Padic.field
algebra
β€”algebraMap_apply
isUnit_iff_ne_zero
coe_ne_zero
mem_nonZeroDivisors_iff_ne_zero
NormMulClass.toNoZeroDivisors
instNormMulClass
IsLocalRing.toNontrivial
instIsLocalRing
Submonoid.coe_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
Right.nonneg_neg_iff
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
LT.lt.le
not_le
Padic.norm_le_one_iff_val_nonneg
norm_zero
zero_le_one
Real.instZeroLEOneClass
Padic.padicNormE.mul
Padic.norm_p_pow
Padic.norm_eq_zpow_neg_valuation
zpow_add'
Nat.cast_ne_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
neg_neg
neg_add_cancel
zpow_zero
le_of_eq
NeZero.pow
isReduced_of_noZeroDivisors
NeZero.charZero
instCharZero
map_pow
map_natCast
isOpenEmbedding_coe πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Padic.normedField
β€”IsOpen.isOpenEmbedding_subtypeVal
dist_eq_norm_sub
sub_zero
IsUltrametricDist.isOpen_closedBall
Padic.instIsUltrametricDist
one_ne_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
isUnit_den πŸ“–mathematicalReal
Real.instLE
Norm.norm
Padic
Padic.instNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Padic.normedField
Real.instOne
IsUnit
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”isUnit_iff
le_antisymm
not_lt
coe_natCast
Rat.cast_natCast
Padic.instCharZero
Rat.cast_intCast
Rat.mul_den_eq_num
Padic.padicNormE.mul
mul_lt_mul'
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
mul_one
Nat.Prime.not_dvd_one
Fact.out
Int.natCast_dvd
isUnit_iff πŸ“–mathematicalβ€”IsUnit
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Norm.norm
instNorm
Real
Real.instOne
β€”isUnit_iff_dvd_one
le_antisymm
norm_le_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
NormOneClass.norm_one
instNormOneClass
norm_mul
instNormMulClass
mul_one
mul_inv
inv_mul
le_valuation_add πŸ“–mathematicalβ€”valuation
PadicInt
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Nat.cast_min
Int.instIsStrictOrderedRing
Padic.le_valuation_add
coe_ne_zero
maximalIdeal_eq_span_p πŸ“–mathematicalβ€”IsLocalRing.maximalIdeal
PadicInt
CommRing.toCommSemiring
instCommRing
instIsLocalRing
Ideal.span
CommSemiring.toSemiring
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”le_antisymm
instIsLocalRing
Ideal.mem_span_singleton
norm_lt_one_iff_dvd
Ideal.span_le
Set.singleton_subset_iff
p_nonunit
mem_nonunits πŸ“–mathematicalβ€”PadicInt
Set
Set.instMembership
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Real
Real.instLT
Norm.norm
instNorm
Real.instOne
β€”norm_le_one
mem_span_pow_iff_le_valuation πŸ“–mathematicalβ€”PadicInt
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
valuation
β€”Ideal.mem_span_singleton
Mathlib.Tactic.Contrapose.contraposeβ‚„
MulZeroClass.mul_zero
valuation_p_pow_mul
le_self_add
Nat.instCanonicallyOrderedAdd
unitCoeff_spec
pow_dvd_pow
mem_subring_iff πŸ“–mathematicalβ€”Padic
Subring
Padic.instRing
SetLike.instMembership
Subring.instSetLike
subring
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
β€”β€”
mkUnits_eq πŸ“–mathematicalNorm.norm
Padic
Padic.instNorm
Real
Real.instOne
Real.instLE
Units.val
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
mkUnits
β€”β€”
mk_coe πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
β€”Subtype.coe_eta
mk_zero πŸ“–mathematicalReal
Real.instLE
Norm.norm
Padic
Padic.instNorm
Padic.instZero
Real.instOne
PadicInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
β€”β€”
mul_inv πŸ“–mathematicalNorm.norm
PadicInt
instNorm
Real
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
inv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”zero_ne_one'
NeZero.charZero_one
Padic.instCharZero
norm_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
norm_eq_padic_norm
mul_inv_cancelβ‚€
nonarchimedean πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Real.instMax
β€”Padic.nonarchimedean
norm_add_eq_max_of_ne πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Real
Real.instMax
β€”Padic.add_eq_max_of_ne
norm_def πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
Padic
Padic.instNorm
Real
Real.instLE
Real.instOne
β€”β€”
norm_eq_of_norm_add_lt_left πŸ“–β€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”β€”by_contra
not_lt_of_ge
norm_add_eq_max_of_ne
le_max_left
norm_eq_of_norm_add_lt_right πŸ“–β€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”β€”by_contra
not_lt_of_ge
norm_add_eq_max_of_ne
le_max_right
norm_eq_padic_norm πŸ“–mathematicalReal
Real.instLE
Norm.norm
Padic
Padic.instNorm
Real.instOne
PadicInt
instNorm
β€”β€”
norm_eq_zpow_neg_valuation πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
valuation
β€”Padic.norm_eq_zpow_neg_valuation
coe_ne_zero
valuation_coe
zpow_neg
zpow_natCast
norm_intCast_eq_one_iff πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real
Real.instOne
IsCoprime
Int.instCommSemiring
β€”norm_def
coe_intCast
Padic.norm_intCast_eq_one_iff
norm_intCast_eq_padic_norm πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Padic
Padic.instNorm
Padic.instRing
β€”β€”
norm_intCast_lt_one_iff πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real.instOne
β€”norm_def
coe_intCast
Padic.norm_intCast_lt_one_iff
norm_int_le_pow_iff_dvd πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Monoid.toNatPow
Int.instMonoid
β€”Padic.norm_int_le_pow_iff_dvd
norm_intCast_eq_padic_norm
zpow_neg
zpow_natCast
norm_int_lt_one_iff_dvd πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real.instOne
β€”Padic.norm_intCast_lt_one_iff
norm_intCast_eq_padic_norm
norm_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
Real.instOne
β€”β€”
norm_le_pow_iff_le_valuation πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
valuation
β€”norm_eq_zpow_neg_valuation
zpow_le_zpow_iff_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
neg_le_neg_iff
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Nat.cast_le
Int.instZeroLEOneClass
Int.instCharZero
norm_le_pow_iff_mem_span_pow πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”norm_zero
zpow_neg
zpow_natCast
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
norm_le_pow_iff_le_valuation
mem_span_pow_iff_le_valuation
norm_le_pow_iff_norm_lt_pow_add_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
PadicInt
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Real.instLT
β€”norm_def
Padic.norm_le_pow_iff_norm_lt_pow_add_one
norm_lt_one_add πŸ“–mathematicalReal
Real.instLT
Norm.norm
PadicInt
instNorm
Real.instOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”lt_of_le_of_lt
nonarchimedean
max_lt
norm_lt_one_iff_dvd πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
Real.instOne
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”norm_le_pow_iff_mem_span_pow
pow_one
Ideal.mem_span_singleton
norm_le_pow_iff_norm_lt_pow_add_one
zero_add
neg_add_cancel
zpow_zero
norm_lt_one_mul πŸ“–mathematicalReal
Real.instLT
Norm.norm
PadicInt
instNorm
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”norm_mul
instNormMulClass
mul_lt_one_of_nonneg_of_lt_one_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_le_one
norm_nonneg
norm_lt_pow_iff_norm_le_pow_sub_one πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Real.instLE
β€”norm_le_pow_iff_norm_lt_pow_add_one
sub_add_cancel
norm_natCast_eq_one_iff πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real
Real.instOne
β€”norm_def
coe_natCast
Padic.norm_natCast_eq_one_iff
norm_natCast_lt_one_iff πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
PadicInt
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real.instOne
β€”norm_def
coe_natCast
Padic.norm_natCast_lt_one_iff
norm_natCast_p_sub_one πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real
Real.instOne
β€”Padic.norm_natCast_p_sub_one
norm_p πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real
Real.instInv
Real.instNatCast
β€”Padic.norm_p
norm_p_pow πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
β€”norm_pow
instNormOneClass
instNormMulClass
norm_p
inv_pow
zpow_neg
zpow_natCast
norm_units πŸ“–mathematicalβ€”Norm.norm
PadicInt
instNorm
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Real
Real.instOne
β€”isUnit_iff
not_isUnit_iff πŸ“–mathematicalβ€”IsUnit
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Real
Real.instLT
Norm.norm
instNorm
Real.instOne
β€”mem_nonunits
one_le_norm_iff πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
Norm.norm
PadicInt
instNorm
β€”Subtype.prop
p_nonunit πŸ“–mathematicalβ€”PadicInt
Set
Set.instMembership
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
mem_nonunits
norm_p
padic_norm_e_of_padicInt πŸ“–mathematicalβ€”Norm.norm
Padic
Padic.instNorm
Real
Real.instLE
Real.instOne
PadicInt
instNorm
β€”β€”
pow_p_dvd_int_iff πŸ“–mathematicalβ€”PadicInt
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
AddGroupWithOne.toIntCast
Int.instMonoid
β€”Nat.cast_pow
norm_int_le_pow_iff_dvd
norm_le_pow_iff_mem_span_pow
Ideal.mem_span_singleton
prime_p πŸ“–mathematicalβ€”Prime
PadicInt
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”Ideal.span_singleton_prime
NeZero.charZero
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
instCharZero
instIsLocalRing
maximalIdeal_eq_span_p
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
unitCoeff_coe πŸ“–mathematicalβ€”Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
Units.val
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
unitCoeff
Padic.instMul
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Padic.normedField
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Padic.instRing
valuation
β€”β€”
unitCoeff_spec πŸ“–mathematicalβ€”PadicInt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
unitCoeff
Monoid.toNatPow
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
valuation
β€”Subtype.coe_injective
unitCoeff_coe
mul_assoc
zpow_natCast
zpow_addβ‚€
NeZero.charZero
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Padic.instCharZero
neg_add_cancel
zpow_zero
mul_one
val_mkUnits πŸ“–mathematicalNorm.norm
Padic
Padic.instNorm
Real
Real.instOne
Units.val
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
mkUnits
Real.instLE
Eq.le
Real.instPreorder
β€”β€”
valuation_coe πŸ“–mathematicalβ€”Padic.valuation
Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
valuation
β€”sup_of_le_left
valuation_coe_nonneg πŸ“–mathematicalβ€”Padic.valuation
Padic
Real
Real.instLE
Norm.norm
Padic.instNorm
Real.instOne
β€”eq_or_ne
Padic.valuation_zero
neg_nonpos
Int.instAddLeftMono
zpow_le_one_iff_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
Padic.norm_eq_zpow_neg_valuation
coe_ne_zero
valuation_mul πŸ“–mathematicalβ€”valuation
PadicInt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Nat.cast_add
Padic.valuation_mul
coe_ne_zero
valuation_one πŸ“–mathematicalβ€”valuation
PadicInt
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”Padic.valuation_one
valuation_p πŸ“–mathematicalβ€”valuation
PadicInt
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
instNormedCommRing
β€”Padic.valuation_natCast
padicValNat_self
Nat.cast_one
valuation_p_pow_mul πŸ“–mathematicalβ€”valuation
PadicInt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”valuation_mul
NeZero.pow
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
instNormMulClass
NeZero.charZero
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
instCharZero
valuation_pow
valuation_p
mul_one
valuation_pow πŸ“–mathematicalβ€”valuation
PadicInt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”Nat.cast_mul
Padic.valuation_pow
valuation_zero πŸ“–mathematicalβ€”valuation
PadicInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Padic.valuation_zero

PadicInt.Coe

Definitions

NameCategoryTheorems
ringHom πŸ“–CompOp
1 mathmath: ringHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ringHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PadicInt
Padic
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
RingHom.instFunLike
ringHom
Subring
Padic.instRing
SetLike.instMembership
Subring.instSetLike
PadicInt.subring
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat

(root)

Definitions

NameCategoryTheorems
PadicInt πŸ“–CompOp
151 mathmath: PadicInt.coe_sub, PadicInt.lift_sub_val_mem_span, PadicInt.norm_int_lt_one_iff_dvd, PadicInt.norm_intCast_eq_padic_norm, PadicInt.valuation_p, PadicInt.coe_zero, PadicInt.val_mkUnits, PadicInt.appr_spec, PadicInt.valuation_zero, PadicInt.norm_intCast_lt_one_iff, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, PadicInt.norm_mahlerTerm, PadicInt.sub_zmodRepr_mem, cyclotomicCharacter.toZModPow, PadicInt.nonarchimedean, PadicInt.norm_p_pow, PadicInt.coe_eq_zero, PadicInt.padic_norm_e_of_padicInt, PadicInt.zmodRepr_mul, PadicInt.mahlerTerm_apply, PadicInt.coe_sum, PadicInt.norm_units, PadicInt.irreducible_p, PadicInt.le_valuation_add, PadicInt.maximalIdeal_eq_span_p, PadicInt.norm_lt_one_iff_dvd, PadicInt.instIsDiscreteValuationRing, PadicInt.algebraMap_apply, PadicInt.instIsLocalRing, PadicInt.exists_mem_range, PadicInt.exists_mem_range_of_norm_rat_le_one, PadicInt.fwdDiff_tendsto_zero, PadicInt.ext_of_toZModPow, PadicInt.compactSpace, PadicInt.mahlerSeries_apply, WittVector.fromPadicInt_comp_toPadicInt, PadicInt.norm_natCast_zmodRepr_eq_one_iff_ne, PadicInt.continuous_choose, PadicInt.coe_addChar_of_value_at_one, PadicInt.mahlerSeries_apply_nat, PadicInt.instIsDomain, PadicInt.norm_eq_zpow_neg_valuation, PadicInt.norm_ascPochhammer_le, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, PadicInt.toZModPow_ofIntSeq_of_pow_dvd_sub, PadicInt.coe_one, PadicInt.Coe.ringHom_apply, PadicInt.completeSpace, PadicInt.coe_natCast, PadicInt.norm_int_le_pow_iff_dvd, PadicInt.denseRange_natCast, WittVector.fromPadicInt_comp_toPadicInt_ext, PadicInt.valuation_pow, mahler_natCast_eq, PadicInt.coe_adicCompletionIntegersEquiv_apply, PadicInt.mahlerTerm_one, padic_polynomial_dist, PadicInt.isFractionRing, PadicInt.zmodRepr_spec, PadicInt.mk_zero, PadicInt.one_le_norm_iff, PadicInt.norm_natCast_zmodRepr_eq_one_iff, PadicInt.toZMod_eq_residueField_comp_residue, PadicInt.zmod_cast_comp_toZModPow, PadicInt.isUnit_iff, PadicInt.limNthHom_spec, PadicInt.continuous_addChar_of_value_at_one, PadicInt.continuousAddCharEquiv_of_norm_mul_symm_apply, PadicInt.toZModPow_eq_iff_ext, PadicInt.mem_span_pow_iff_le_valuation, PadicInt.hasSum_mahlerSeries, PadicInt.norm_le_pow_iff_norm_lt_pow_add_one, PadicInt.instIsUltrametricDist, PadicInt.norm_intCast_eq_one_iff, PadicInt.norm_le_pow_iff_le_valuation, PadicInt.isUnit_den, PadicInt.norm_le_pow_iff_mem_span_pow, PadicInt.norm_eq_padic_norm, PadicInt.zmodRepr_natCast, PadicInt.valuation_one, PadicInt.norm_natCast_zmodRepr_eq, PadicInt.zmodRepr_zero, PadicInt.ker_toZModPow, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, PadicInt.hasSum_mahler, PadicInt.instNormOneClass, PadicInt.limNthHom_add, PadicInt.instIsAdicCompleteMaximalIdeal, PadicInt.not_isUnit_iff, WittVector.toPadicInt_comp_fromPadicInt_ext, PadicInt.totallyBounded_univ, WittVector.toPadicInt_comp_fromPadicInt, PadicInt.norm_sub_modPart, PadicInt.norm_p, PadicInt.valuation_p_pow_mul, cyclotomicCharacter.toZModPow_toFun, PadicInt.fwdDiff_mahlerSeries, PadicInt.zmodRepr_natCast_zmodRepr, PadicInt.pow_p_dvd_int_iff, PadicInt.continuous_multichoose, PadicInt.lift_spec, PadicInt.norm_lt_pow_iff_norm_le_pow_sub_one, PadicInt.p_nonunit, PadicInt.instNormMulClass, PadicInt.limNthHom_one, PadicInt.norm_sub_zmodRepr_lt_one, cyclotomicCharacter.spec, PadicInt.mahlerEquiv_apply, PadicInt.norm_add_eq_max_of_ne, PadicInt.mkUnits_eq, PadicInt.norm_mahler_eq, PadicInt.continuousAddCharEquiv_symm_apply, PadicInt.coe_neg, PadicInt.norm_def, PadicInt.norm_natCast_eq_one_iff, PadicInt.ker_toZMod, mahler_apply, PadicInt.ideal_eq_span_pow_p, PadicInt.limNthHom_mul, PadicInt.norm_le_one, PadicInt.mahlerEquiv_symm_apply, PadicInt.mem_nonunits, PadicInt.complete, PadicInt.denseRange_intCast, PadicInt.limNthHom_zero, PadicInt.unitCoeff_spec, PadicInt.norm_natCast_zmodRepr_eq_iff, PadicInt.coe_mul, PadicInt.coe_add, PadicInt.intCast_eq, PadicInt.unitCoeff_coe, PadicInt.instIsAddTorsionFree, PadicInt.coe_dpow_eq, PadicInt.coe_intCast, PadicInt.norm_natCast_p_sub_one, PadicInt.cast_toZModPow, PadicInt.prime_p, WittVector.zmodEquivTrunc_compat, PadicInt.zmodRepr_natCast_of_lt, PadicInt.val_toZMod_eq_zmodRepr, cyclotomicCharacter.continuous, PadicInt.existsUnique_mem_range, PadicInt.toZMod_spec, PadicInt.instCharZero, cyclotomicCharacter.toFun_spec, PadicInt.zmodRepr_eq_zero_iff_dvd, PadicInt.lift_self, PadicInt.coe_pow, PadicInt.valuation_mul, PadicInt.addChar_of_value_at_one_def, PadicInt.norm_natCast_lt_one_iff
Β«termβ„€_[_]Β» πŸ“–CompOpβ€”

---

← Back to Index