Documentation

Mathlib.NumberTheory.Padics.PadicIntegers

p-adic integers #

This file defines the p-adic integers ℤ_[p] as the subtype of ℚ_[p] with norm ≤ 1. We show that ℤ_[p]

The relation between ℤ_[p] and ZMod p is established in another file.

Important definitions #

Notation #

We introduce the notation ℤ_[p] for the p-adic integers.

Implementation notes #

Much, but not all, of this file assumes that p is prime. This assumption is inferred automatically by taking [Fact p.Prime] as a type class argument.

Coercions into ℤ_[p] are set up to work with the norm_cast tactic.

References #

Tags #

p-adic, p adic, padic, p-adic integer

def PadicInt (p : ) [hp : Fact (Nat.Prime p)] :

The p-adic integers ℤ_[p] are the p-adic numbers with norm ≤ 1.

Equations
    Instances For

      The ring of p-adic integers.

      Equations
        Instances For

          Ring structure and coercion to ℚ_[p] #

          theorem PadicInt.ext {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} :
          x = yx = y

          The p-adic integers as a subring of ℚ_[p].

          Equations
            Instances For
              @[simp]
              theorem PadicInt.mem_subring_iff (p : ) [hp : Fact (Nat.Prime p)] {x : ℚ_[p]} :
              @[simp]
              theorem PadicInt.mk_zero {p : } [hp : Fact (Nat.Prime p)] {h : 0 1} :
              0, h = 0
              @[simp]
              theorem PadicInt.coe_add {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
              ↑(z1 + z2) = z1 + z2
              @[simp]
              theorem PadicInt.coe_mul {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
              ↑(z1 * z2) = z1 * z2
              @[simp]
              theorem PadicInt.coe_neg {p : } [hp : Fact (Nat.Prime p)] (z1 : ℤ_[p]) :
              ↑(-z1) = -z1
              @[simp]
              theorem PadicInt.coe_sub {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
              ↑(z1 - z2) = z1 - z2
              @[simp]
              theorem PadicInt.coe_one {p : } [hp : Fact (Nat.Prime p)] :
              1 = 1
              @[simp]
              theorem PadicInt.coe_zero {p : } [hp : Fact (Nat.Prime p)] :
              0 = 0
              @[simp]
              theorem PadicInt.coe_eq_zero {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
              x = 0 x = 0
              theorem PadicInt.coe_ne_zero {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
              x 0 x 0
              @[simp]
              theorem PadicInt.coe_natCast {p : } [hp : Fact (Nat.Prime p)] (n : ) :
              n = n
              @[simp]
              theorem PadicInt.coe_intCast {p : } [hp : Fact (Nat.Prime p)] (z : ) :
              z = z

              The coercion from ℤ_[p] to ℚ_[p] as a ring homomorphism.

              Equations
                Instances For
                  @[simp]
                  theorem PadicInt.Coe.ringHom_apply {p : } [hp : Fact (Nat.Prime p)] (self : (subring p)) :
                  ringHom self = self
                  @[simp]
                  theorem PadicInt.coe_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
                  ↑(x ^ n) = x ^ n
                  theorem PadicInt.mk_coe {p : } [hp : Fact (Nat.Prime p)] (k : ℤ_[p]) :
                  k, = k
                  @[simp]
                  theorem PadicInt.coe_sum {p : } [hp : Fact (Nat.Prime p)] {α : Type u_1} (s : Finset α) (f : αℤ_[p]) :
                  (∑ zs, f z) = zs, (f z)
                  def PadicInt.inv {p : } [hp : Fact (Nat.Prime p)] :

                  The inverse of a p-adic integer with norm equal to 1 is also a p-adic integer. Otherwise, the inverse is defined to be 0.

                  Equations
                    Instances For
                      theorem PadicInt.intCast_eq {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ) :
                      z1 = z2 z1 = z2
                      def PadicInt.ofIntSeq {p : } [hp : Fact (Nat.Prime p)] (seq : ) (h : IsCauSeq (padicNorm p) fun (n : ) => (seq n)) :

                      A sequence of integers that is Cauchy with respect to the p-adic norm converges to a p-adic integer.

                      Equations
                        Instances For

                          Instances #

                          We now show that ℤ_[p] is a

                          instance PadicInt.instNorm (p : ) [hp : Fact (Nat.Prime p)] :
                          Equations

                            Norm #

                            theorem PadicInt.norm_eq_of_norm_add_lt_right {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (h : z1 + z2 < z2) :
                            theorem PadicInt.norm_eq_of_norm_add_lt_left {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (h : z1 + z2 < z1) :
                            @[simp]
                            theorem PadicInt.norm_eq_padic_norm {p : } [hp : Fact (Nat.Prime p)] {q : ℚ_[p]} (hq : q 1) :
                            @[simp]
                            theorem PadicInt.norm_p {p : } [hp : Fact (Nat.Prime p)] :
                            p = (↑p)⁻¹
                            theorem PadicInt.norm_p_pow {p : } [hp : Fact (Nat.Prime p)] (n : ) :
                            p ^ n = p ^ (-n)
                            @[simp]
                            theorem PadicInt.one_le_norm_iff {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
                            @[simp]
                            theorem PadicInt.norm_natCast_p_sub_one {p : } [hp : Fact (Nat.Prime p)] :
                            ↑(p - 1) = 1
                            theorem PadicInt.exists_pow_neg_lt (p : ) [hp : Fact (Nat.Prime p)] {ε : } ( : 0 < ε) :
                            ∃ (k : ), p ^ (-k) < ε
                            theorem PadicInt.exists_pow_neg_lt_rat (p : ) [hp : Fact (Nat.Prime p)] {ε : } ( : 0 < ε) :
                            ∃ (k : ), p ^ (-k) < ε
                            theorem PadicInt.norm_int_le_pow_iff_dvd {p : } [hp : Fact (Nat.Prime p)] {k : } {n : } :
                            k p ^ (-n) p ^ n k
                            @[simp]
                            theorem PadicInt.norm_natCast_eq_one_iff {p : } [hp : Fact (Nat.Prime p)] {n : } :
                            n = 1 p.Coprime n
                            @[simp]
                            theorem PadicInt.norm_natCast_lt_one_iff {p : } [hp : Fact (Nat.Prime p)] {n : } :
                            n < 1 p n
                            @[simp]
                            theorem PadicInt.norm_intCast_eq_one_iff {p : } [hp : Fact (Nat.Prime p)] {z : } :
                            z = 1 IsCoprime z p
                            @[simp]
                            theorem PadicInt.norm_intCast_lt_one_iff {p : } [hp : Fact (Nat.Prime p)] {z : } :
                            z < 1 p z

                            Valuation on ℤ_[p] #

                            def PadicInt.valuation {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :

                            PadicInt.valuation lifts the p-adic valuation on to ℤ_[p].

                            Equations
                              Instances For
                                @[simp]
                                theorem PadicInt.valuation_coe {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :
                                (↑x).valuation = x.valuation
                                @[simp]
                                theorem PadicInt.valuation_one {p : } [hp : Fact (Nat.Prime p)] :
                                @[simp]
                                theorem PadicInt.valuation_p {p : } [hp : Fact (Nat.Prime p)] :
                                (↑p).valuation = 1
                                theorem PadicInt.le_valuation_add {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} (hxy : x + y 0) :
                                @[simp]
                                theorem PadicInt.valuation_mul {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} (hx : x 0) (hy : y 0) :
                                @[simp]
                                theorem PadicInt.valuation_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
                                (x ^ n).valuation = n * x.valuation
                                theorem PadicInt.norm_eq_zpow_neg_valuation {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
                                x = p ^ (-x.valuation)
                                @[simp]
                                theorem PadicInt.valuation_p_pow_mul {p : } [hp : Fact (Nat.Prime p)] (n : ) (c : ℤ_[p]) (hc : c 0) :
                                (p ^ n * c).valuation = n + c.valuation

                                Units of ℤ_[p] #

                                theorem PadicInt.mul_inv {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} :
                                z = 1z * z.inv = 1
                                theorem PadicInt.inv_mul {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} (hz : z = 1) :
                                z.inv * z = 1
                                theorem PadicInt.norm_lt_one_add {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (hz1 : z1 < 1) (hz2 : z2 < 1) :
                                z1 + z2 < 1
                                theorem PadicInt.norm_lt_one_mul {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (hz2 : z2 < 1) :
                                z1 * z2 < 1
                                def PadicInt.mkUnits {p : } [hp : Fact (Nat.Prime p)] {u : ℚ_[p]} (h : u = 1) :

                                A p-adic number u with ‖u‖ = 1 is a unit of ℤ_[p].

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem PadicInt.val_mkUnits {p : } [hp : Fact (Nat.Prime p)] {u : ℚ_[p]} (h : u = 1) :
                                    (mkUnits h) = u,
                                    theorem PadicInt.mkUnits_eq {p : } [hp : Fact (Nat.Prime p)] {u : ℚ_[p]} (h : u = 1) :
                                    (mkUnits h) = u
                                    @[simp]
                                    theorem PadicInt.norm_units {p : } [hp : Fact (Nat.Prime p)] (u : ℤ_[p]ˣ) :
                                    u = 1
                                    def PadicInt.unitCoeff {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :

                                    unitCoeff hx is the unit u in the unique representation x = u * p ^ n. See unitCoeff_spec.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem PadicInt.unitCoeff_coe {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
                                        (unitCoeff hx) = x * p ^ (-x.valuation)
                                        theorem PadicInt.unitCoeff_spec {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
                                        x = (unitCoeff hx) * p ^ x.valuation
                                        theorem PadicInt.isUnit_den {p : } [hp_prime : Fact (Nat.Prime p)] (r : ) (h : r 1) :
                                        IsUnit r.den

                                        Various characterizations of open unit balls #

                                        theorem PadicInt.norm_le_pow_iff_le_valuation {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (hx : x 0) (n : ) :
                                        x p ^ (-n) n x.valuation
                                        theorem PadicInt.norm_le_pow_iff_mem_span_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
                                        x p ^ (-n) x Ideal.span {p ^ n}
                                        theorem PadicInt.norm_le_pow_iff_norm_lt_pow_add_one {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
                                        x p ^ n x < p ^ (n + 1)
                                        theorem PadicInt.norm_lt_pow_iff_norm_le_pow_sub_one {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
                                        x < p ^ n x p ^ (n - 1)
                                        @[simp]
                                        theorem PadicInt.pow_p_dvd_int_iff {p : } [hp : Fact (Nat.Prime p)] (n : ) (a : ) :
                                        p ^ n a p ^ n a

                                        Discrete valuation ring #

                                        theorem PadicInt.ideal_eq_span_pow_p {p : } [hp : Fact (Nat.Prime p)] {s : Ideal ℤ_[p]} (hs : s ) :
                                        ∃ (n : ), s = Ideal.span {p ^ n}
                                        @[simp]
                                        theorem PadicInt.algebraMap_apply {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :