Documentation Verification Report

Antisymmetrization

πŸ“ Source: Mathlib/Order/Antisymmetrization.lean

Statistics

MetricCount
DefinitionsAntisymmRel, decidableRel, setoid, Antisymmetrization, prodEquiv, exactAntisymmRelLeft, exactAntisymmRelRight, ofAntisymmetrization, antisymmetrization, dualAntisymmetrization, instInhabitedAntisymmetrization, instLinearOrderAntisymmetrizationLeOfDecidableLEOfDecidableLTOfTotal, instPartialOrderAntisymmetrization, instTransAntisymmRelLe, instTransAntisymmRelLeLt, instTransAntisymmRelLeSymmGen, instTransLeAntisymmRel, instTransLtAntisymmRelLe, instTransSymmGenLeAntisymmRel, ofAntisymmetrization, toAntisymmetrization
21
TheoremsantisymmRel_congr, antisymmRel_congr_left, antisymmRel_congr_right, eq, ge, image, le, le_congr, le_congr_left, le_congr_right, lt_congr, lt_congr_left, lt_congr_right, not_gt, not_lt, of_eq, refl, rfl, setoid_r, symmGen, symmGen_congr, symmGen_congr_left, symmGen_congr_right, trans, trans_le, trans_lt, trans_symmGen, ind, induction_on, prodEquiv_apply_mk, prodEquiv_symm_apply_mk, antisymmRel, lt_or_antisymmRel, trans_antisymmRel, not_antisymmRel, not_antisymmRel_symm, symmGen, symmGen_symm, trans_antisymmRel, left, right, ofAntisymmetrization_apply, antisymmetrization_apply, antisymmetrization_apply_mk, coe_antisymmetrization, dualAntisymmetrization_apply, dualAntisymmetrization_symm_apply, of_antisymmRel_of_symmGen, of_gt, of_lt, of_symmGen_of_antisymmRel, trans_antisymmRel, acc_antisymmetrization_iff, antisymmRel_comm, antisymmRel_iff_eq, antisymmRel_swap, antisymmRel_swap_apply, antisymmetrization_fibration, instIsTransAntisymmRel, instReflAntisymmRel, instSubsingletonAntisymmetrization, instSymmAntisymmRel, instWellFoundedGTAntisymmetrizationLe, instWellFoundedLTAntisymmetrizationLe, le_iff_lt_or_antisymmRel, le_of_antisymmRel_of_le, le_of_le_of_antisymmRel, lt_of_antisymmRel_of_lt, lt_of_lt_of_antisymmRel, not_antisymmRel_of_gt, not_antisymmRel_of_lt, not_gt_of_antisymmRel, not_lt_of_antisymmRel, ofAntisymmetrization_le_ofAntisymmetrization_iff, ofAntisymmetrization_lt_ofAntisymmetrization_iff, toAntisymmetrization_le_toAntisymmetrization_iff, toAntisymmetrization_lt_toAntisymmetrization_iff, toAntisymmetrization_mono, toAntisymmetrization_ofAntisymmetrization, wellFoundedGT_antisymmetrization_iff, wellFoundedLT_antisymmetrization_iff, wellFounded_antisymmetrization_iff
82
Total103

AntisymmRel

Definitions

NameCategoryTheorems
decidableRel πŸ“–CompOpβ€”
setoid πŸ“–CompOp
5 mathmath: OrderHom.antisymmetrization_apply, OrderHom.coe_antisymmetrization, Antisymmetrization.prodEquiv_symm_apply_mk, Antisymmetrization.prodEquiv_apply_mk, setoid_r

Theorems

NameKindAssumesProvesValidatesDepends On
antisymmRel_congr πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”rel_congr
instSymmAntisymmRel
instIsTransAntisymmRel
instIsTransLe
antisymmRel_congr_left πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”rel_congr_left
instSymmAntisymmRel
instIsTransAntisymmRel
instIsTransLe
antisymmRel_congr_right πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”rel_congr_right
instSymmAntisymmRel
instIsTransAntisymmRel
instIsTransLe
eq πŸ“–β€”AntisymmRelβ€”β€”antisymmRel_iff_eq
ge πŸ“–β€”AntisymmRelβ€”β€”β€”
image πŸ“–β€”AntisymmRel
Preorder.toLE
Monotone
β€”β€”β€”
le πŸ“–β€”AntisymmRelβ€”β€”β€”
le_congr πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”LE.le.trans_antisymmRel
trans_le
symm
le_congr_left πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”le_congr
rfl
instReflLe
le_congr_right πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”le_congr
rfl
instReflLe
lt_congr πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”LT.lt.trans_antisymmRel
trans_lt
symm
lt_congr_left πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”lt_congr
rfl
instReflLe
lt_congr_right πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”lt_congr
rfl
instReflLe
not_gt πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”not_gt_of_antisymmRel
not_lt πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”not_lt_of_antisymmRel
of_eq πŸ“–mathematicalβ€”AntisymmRelβ€”rfl
refl πŸ“–mathematicalβ€”AntisymmRelβ€”refl
rfl πŸ“–mathematicalβ€”AntisymmRelβ€”refl
setoid_r πŸ“–mathematicalβ€”setoid
AntisymmRel
β€”β€”
symmGen πŸ“–mathematicalAntisymmRelRelation.SymmGenβ€”β€”
symmGen_congr πŸ“–mathematicalAntisymmRel
Preorder.toLE
Relation.SymmGenβ€”Relation.SymmGen.trans_antisymmRel
trans_symmGen
symm
symmGen_congr_left πŸ“–mathematicalAntisymmRel
Preorder.toLE
Relation.SymmGenβ€”symmGen_congr
rfl
instReflLe
symmGen_congr_right πŸ“–mathematicalAntisymmRel
Preorder.toLE
Relation.SymmGenβ€”symmGen_congr
rfl
instReflLe
trans πŸ“–β€”AntisymmRelβ€”β€”trans
trans_le πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”le_of_antisymmRel_of_le
trans_lt πŸ“–β€”AntisymmRel
Preorder.toLE
Preorder.toLT
β€”β€”lt_of_antisymmRel_of_lt
trans_symmGen πŸ“–β€”AntisymmRel
Preorder.toLE
Relation.SymmGen
β€”β€”Relation.SymmGen.of_antisymmRel_of_symmGen

Antisymmetrization

Definitions

NameCategoryTheorems
prodEquiv πŸ“–CompOp
2 mathmath: prodEquiv_symm_apply_mk, prodEquiv_apply_mk

Theorems

NameKindAssumesProvesValidatesDepends On
ind πŸ“–β€”toAntisymmetrizationβ€”β€”β€”
induction_on πŸ“–β€”toAntisymmetrizationβ€”β€”Quotient.inductionOn'
prodEquiv_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Antisymmetrization
Prod.instLE_mathlib
Preorder.toLE
instIsPreorderLe
Prod.instPreorder
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLikeOrderIso
prodEquiv
AntisymmRel.setoid
β€”instIsPreorderLe
prodEquiv_symm_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Prod.instLE_mathlib
Prod.instPreorder
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLikeOrderIso
OrderIso.symm
prodEquiv
AntisymmRel.setoid
β€”instIsPreorderLe

Eq

Theorems

NameKindAssumesProvesValidatesDepends On
antisymmRel πŸ“–mathematicalβ€”AntisymmRelβ€”AntisymmRel.of_eq

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
lt_or_antisymmRel πŸ“–mathematicalPreorder.toLEPreorder.toLT
AntisymmRel
β€”le_iff_lt_or_antisymmRel
trans_antisymmRel πŸ“–β€”Preorder.toLE
AntisymmRel
β€”β€”le_of_le_of_antisymmRel

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
not_antisymmRel πŸ“–mathematicalPreorder.toLTAntisymmRel
Preorder.toLE
β€”not_antisymmRel_of_lt
not_antisymmRel_symm πŸ“–mathematicalPreorder.toLTAntisymmRel
Preorder.toLE
β€”not_antisymmRel_of_gt
symmGen πŸ“–mathematicalPreorder.toLTRelation.SymmGen
Preorder.toLE
β€”Relation.SymmGen.of_lt
symmGen_symm πŸ“–mathematicalPreorder.toLTRelation.SymmGen
Preorder.toLE
β€”Relation.SymmGen.of_gt
trans_antisymmRel πŸ“–β€”Preorder.toLT
AntisymmRel
Preorder.toLE
β€”β€”lt_of_lt_of_antisymmRel

Mathlib.Tactic.GCongr

Definitions

NameCategoryTheorems
exactAntisymmRelLeft πŸ“–CompOpβ€”
exactAntisymmRelRight πŸ“–CompOpβ€”

Mathlib.Tactic.GCongr.AntisymmRel

Theorems

NameKindAssumesProvesValidatesDepends On
left πŸ“–β€”AntisymmRelβ€”β€”β€”
right πŸ“–β€”AntisymmRelβ€”β€”β€”

OrderEmbedding

Definitions

NameCategoryTheorems
ofAntisymmetrization πŸ“–CompOp
1 mathmath: ofAntisymmetrization_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ofAntisymmetrization_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
RelEmbedding.instFunLike
ofAntisymmetrization
ofAntisymmetrization
β€”instIsPreorderLe

OrderHom

Definitions

NameCategoryTheorems
antisymmetrization πŸ“–CompOp
3 mathmath: antisymmetrization_apply, coe_antisymmetrization, antisymmetrization_apply_mk

Theorems

NameKindAssumesProvesValidatesDepends On
antisymmetrization_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLike
antisymmetrization
Quotient.map'
AntisymmRel.setoid
β€”instIsPreorderLe
antisymmetrization_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLike
antisymmetrization
toAntisymmetrization
β€”instIsPreorderLe
coe_antisymmetrization πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLike
antisymmetrization
Quotient.map'
AntisymmRel.setoid
β€”instIsPreorderLe

OrderIso

Definitions

NameCategoryTheorems
dualAntisymmetrization πŸ“–CompOp
5 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, dualAntisymmetrization_symm_apply, dualAntisymmetrization_apply, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe

Theorems

NameKindAssumesProvesValidatesDepends On
dualAntisymmetrization_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Antisymmetrization
Preorder.toLE
instIsPreorderLe
OrderDual.instLE
OrderDual.instPreorder
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLikeOrderIso
dualAntisymmetrization
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
toAntisymmetrization
β€”instIsPreorderLe
dualAntisymmetrization_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Antisymmetrization
OrderDual
OrderDual.instLE
Preorder.toLE
instIsPreorderLe
OrderDual.instPreorder
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
instFunLikeOrderIso
symm
dualAntisymmetrization
toAntisymmetrization
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”instIsPreorderLe

Relation.SymmGen

Theorems

NameKindAssumesProvesValidatesDepends On
of_antisymmRel_of_symmGen πŸ“–β€”AntisymmRel
Preorder.toLE
Relation.SymmGen
β€”β€”symm
trans_antisymmRel
AntisymmRel.symm
of_gt πŸ“–mathematicalPreorder.toLTRelation.SymmGen
Preorder.toLE
β€”LE.le.symmGen_symm
LT.lt.le
of_lt πŸ“–mathematicalPreorder.toLTRelation.SymmGen
Preorder.toLE
β€”LE.le.symmGen
LT.lt.le
of_symmGen_of_antisymmRel πŸ“–β€”Relation.SymmGen
Preorder.toLE
AntisymmRel
β€”β€”LE.le.symmGen
LE.le.trans
AntisymmRel.le
LE.le.symmGen_symm
AntisymmRel.ge
trans_antisymmRel πŸ“–β€”Relation.SymmGen
Preorder.toLE
AntisymmRel
β€”β€”of_symmGen_of_antisymmRel

(root)

Definitions

NameCategoryTheorems
AntisymmRel πŸ“–MathDef
28 mathmath: instIsTransAntisymmRel, not_antisymmRel_of_gt, AntisymmRel.rfl, antisymmRel_iff_eq, AntisymmRel.of_eq, not_antisymmRel_of_lt, antisymmRel_swap_apply, Pi.exists_forall_antisymmRel_of_wcovBy, LT.lt.not_antisymmRel_symm, Pi.covBy_iff_antisymmRel, Eq.antisymmRel, instSymmAntisymmRel, le_iff_lt_or_antisymmRel, antisymmRel_compl_apply, antisymmRel_comm, Pi.wcovBy_iff_antisymmRel, incompRel_compl_apply, LT.lt.not_antisymmRel, antisymmRel_compl, lt_or_antisymmRel_or_gt_or_incompRel, instReflAntisymmRel, AntisymmRel.refl, antisymmRel_swap, incompRel_compl, IncompRel.not_antisymmRel, LE.le.lt_or_antisymmRel, Pi.exists_forall_antisymmRel_of_covBy, AntisymmRel.setoid_r
Antisymmetrization πŸ“–CompOp
22 mathmath: toAntisymmetrization_mono, antisymmetrization_fibration, OrderHom.antisymmetrization_apply, OrderIso.dualAntisymmetrization_symm_apply, OrderHom.coe_antisymmetrization, toAntisymmetrization_lt_toAntisymmetrization_iff, instWellFoundedGTAntisymmetrizationLe, ofAntisymmetrization_le_ofAntisymmetrization_iff, instWellFoundedLTAntisymmetrizationLe, wellFounded_antisymmetrization_iff, wellFoundedLT_antisymmetrization_iff, OrderIso.dualAntisymmetrization_apply, wellFoundedGT_antisymmetrization_iff, instSubsingletonAntisymmetrization, Antisymmetrization.prodEquiv_symm_apply_mk, OrderHom.antisymmetrization_apply_mk, acc_antisymmetrization_iff, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', toAntisymmetrization_le_toAntisymmetrization_iff, Antisymmetrization.prodEquiv_apply_mk, OrderEmbedding.ofAntisymmetrization_apply, ofAntisymmetrization_lt_ofAntisymmetrization_iff
instInhabitedAntisymmetrization πŸ“–CompOpβ€”
instLinearOrderAntisymmetrizationLeOfDecidableLEOfDecidableLTOfTotal πŸ“–CompOpβ€”
instPartialOrderAntisymmetrization πŸ“–CompOp
21 mathmath: toAntisymmetrization_mono, antisymmetrization_fibration, OrderHom.antisymmetrization_apply, OrderIso.dualAntisymmetrization_symm_apply, OrderHom.coe_antisymmetrization, toAntisymmetrization_lt_toAntisymmetrization_iff, instWellFoundedGTAntisymmetrizationLe, ofAntisymmetrization_le_ofAntisymmetrization_iff, instWellFoundedLTAntisymmetrizationLe, wellFounded_antisymmetrization_iff, wellFoundedLT_antisymmetrization_iff, OrderIso.dualAntisymmetrization_apply, wellFoundedGT_antisymmetrization_iff, Antisymmetrization.prodEquiv_symm_apply_mk, OrderHom.antisymmetrization_apply_mk, acc_antisymmetrization_iff, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', toAntisymmetrization_le_toAntisymmetrization_iff, Antisymmetrization.prodEquiv_apply_mk, OrderEmbedding.ofAntisymmetrization_apply, ofAntisymmetrization_lt_ofAntisymmetrization_iff
instTransAntisymmRelLe πŸ“–CompOpβ€”
instTransAntisymmRelLeLt πŸ“–CompOpβ€”
instTransAntisymmRelLeSymmGen πŸ“–CompOpβ€”
instTransLeAntisymmRel πŸ“–CompOpβ€”
instTransLtAntisymmRelLe πŸ“–CompOpβ€”
instTransSymmGenLeAntisymmRel πŸ“–CompOpβ€”
ofAntisymmetrization πŸ“–CompOp
4 mathmath: ofAntisymmetrization_le_ofAntisymmetrization_iff, toAntisymmetrization_ofAntisymmetrization, OrderEmbedding.ofAntisymmetrization_apply, ofAntisymmetrization_lt_ofAntisymmetrization_iff
toAntisymmetrization πŸ“–CompOp
9 mathmath: toAntisymmetrization_mono, antisymmetrization_fibration, OrderIso.dualAntisymmetrization_symm_apply, toAntisymmetrization_lt_toAntisymmetrization_iff, OrderIso.dualAntisymmetrization_apply, OrderHom.antisymmetrization_apply_mk, acc_antisymmetrization_iff, toAntisymmetrization_ofAntisymmetrization, toAntisymmetrization_le_toAntisymmetrization_iff

Theorems

NameKindAssumesProvesValidatesDepends On
acc_antisymmetrization_iff πŸ“–mathematicalβ€”Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
toAntisymmetrization
β€”acc_liftβ‚‚_iff
instIsPreorderLe
antisymmRel_comm πŸ“–mathematicalβ€”AntisymmRelβ€”β€”
antisymmRel_iff_eq πŸ“–mathematicalβ€”AntisymmRelβ€”antisymm_iff
antisymmRel_swap πŸ“–mathematicalβ€”AntisymmRel
Function.swap
β€”β€”
antisymmRel_swap_apply πŸ“–mathematicalβ€”AntisymmRel
Function.swap
β€”β€”
antisymmetrization_fibration πŸ“–mathematicalβ€”Relation.Fibration
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
toAntisymmetrization
β€”instIsPreorderLe
instIsTransAntisymmRel πŸ“–mathematicalβ€”IsTrans
AntisymmRel
β€”AntisymmRel.trans
instReflAntisymmRel πŸ“–mathematicalβ€”AntisymmRelβ€”AntisymmRel.refl
instSubsingletonAntisymmetrization πŸ“–mathematicalβ€”Antisymmetrizationβ€”Quotient.instSubsingletonQuotient
instSymmAntisymmRel πŸ“–mathematicalβ€”AntisymmRelβ€”AntisymmRel.symm
instWellFoundedGTAntisymmetrizationLe πŸ“–mathematicalβ€”WellFoundedGT
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
wellFoundedGT_antisymmetrization_iff
instWellFoundedLTAntisymmetrizationLe πŸ“–mathematicalβ€”WellFoundedLT
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
wellFoundedLT_antisymmetrization_iff
le_iff_lt_or_antisymmRel πŸ“–mathematicalβ€”Preorder.toLE
Preorder.toLT
AntisymmRel
β€”lt_iff_le_not_ge
AntisymmRel.eq_1
le_of_antisymmRel_of_le πŸ“–β€”AntisymmRel
Preorder.toLE
β€”β€”LE.le.trans
AntisymmRel.le
le_of_le_of_antisymmRel πŸ“–β€”Preorder.toLE
AntisymmRel
β€”β€”LE.le.trans
AntisymmRel.le
lt_of_antisymmRel_of_lt πŸ“–β€”AntisymmRel
Preorder.toLE
Preorder.toLT
β€”β€”LE.le.trans_lt
AntisymmRel.le
lt_of_lt_of_antisymmRel πŸ“–β€”Preorder.toLT
AntisymmRel
Preorder.toLE
β€”β€”LT.lt.trans_le
AntisymmRel.le
not_antisymmRel_of_gt πŸ“–mathematicalPreorder.toLTAntisymmRel
Preorder.toLE
β€”not_gt_of_antisymmRel
not_antisymmRel_of_lt πŸ“–mathematicalPreorder.toLTAntisymmRel
Preorder.toLE
β€”not_lt_of_antisymmRel
not_gt_of_antisymmRel πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”LE.le.not_gt
AntisymmRel.le
not_lt_of_antisymmRel πŸ“–mathematicalAntisymmRel
Preorder.toLE
Preorder.toLTβ€”LE.le.not_gt
AntisymmRel.ge
ofAntisymmetrization_le_ofAntisymmetrization_iff πŸ“–mathematicalβ€”Preorder.toLE
ofAntisymmetrization
instIsPreorderLe
Antisymmetrization
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
RelEmbedding.map_rel_iff
ofAntisymmetrization_lt_ofAntisymmetrization_iff πŸ“–mathematicalβ€”Preorder.toLT
ofAntisymmetrization
Preorder.toLE
instIsPreorderLe
Antisymmetrization
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
RelEmbedding.map_rel_iff
toAntisymmetrization_le_toAntisymmetrization_iff πŸ“–mathematicalβ€”Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
toAntisymmetrization
β€”instIsPreorderLe
toAntisymmetrization_lt_toAntisymmetrization_iff πŸ“–mathematicalβ€”Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
toAntisymmetrization
β€”instIsPreorderLe
toAntisymmetrization_mono πŸ“–mathematicalβ€”Monotone
Antisymmetrization
Preorder.toLE
instIsPreorderLe
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
toAntisymmetrization
β€”β€”
toAntisymmetrization_ofAntisymmetrization πŸ“–mathematicalβ€”toAntisymmetrization
ofAntisymmetrization
β€”Quotient.out_eq'
wellFoundedGT_antisymmetrization_iff πŸ“–mathematicalβ€”WellFoundedGT
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
LT.lt.trans_le
LE.le.trans_lt
wellFounded_liftOnβ‚‚'_iff
wellFoundedLT_antisymmetrization_iff πŸ“–mathematicalβ€”WellFoundedLT
Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”instIsPreorderLe
wellFounded_antisymmetrization_iff πŸ“–mathematicalβ€”Antisymmetrization
Preorder.toLE
instIsPreorderLe
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderAntisymmetrization
β€”wellFounded_liftβ‚‚_iff
instIsPreorderLe

---

← Back to Index