Documentation

Mathlib.Order.Antisymmetrization

Turning a preorder into a partial order #

This file allows to make a preorder into a partial order by quotienting out the elements a, b such that a ≤ b and b ≤ a.

Antisymmetrization is a functor from Preorder to PartialOrder. See Preorder_to_PartialOrder.

Main declarations #

def AntisymmRel {α : Type u_1} (r : ααProp) (a b : α) :

The antisymmetrization relation AntisymmRel r is defined so that AntisymmRel r a b ↔ r a b ∧ r b a.

Equations
    Instances For
      theorem antisymmRel_swap {α : Type u_1} (r : ααProp) :
      theorem antisymmRel_swap_apply {α : Type u_1} {a b : α} (r : ααProp) :
      @[simp]
      theorem AntisymmRel.refl {α : Type u_1} (r : ααProp) [Std.Refl r] (a : α) :
      theorem AntisymmRel.rfl {α : Type u_1} {r : ααProp} [Std.Refl r] {a : α} :
      instance instReflAntisymmRel {α : Type u_1} (r : ααProp) [Std.Refl r] :
      theorem AntisymmRel.of_eq {α : Type u_1} {r : ααProp} [Std.Refl r] {a b : α} (h : a = b) :
      theorem Eq.antisymmRel {α : Type u_1} {r : ααProp} [Std.Refl r] {a b : α} (h : a = b) :

      Alias of AntisymmRel.of_eq.

      theorem AntisymmRel.symm {α : Type u_1} {a b : α} {r : ααProp} :
      AntisymmRel r a bAntisymmRel r b a
      instance instSymmAntisymmRel {α : Type u_1} {r : ααProp} :
      theorem antisymmRel_comm {α : Type u_1} {a b : α} {r : ααProp} :
      theorem AntisymmRel.trans {α : Type u_1} {a b c : α} {r : ααProp} [IsTrans α r] (hab : AntisymmRel r a b) (hbc : AntisymmRel r b c) :
      instance instIsTransAntisymmRel {α : Type u_1} {r : ααProp} [IsTrans α r] :
      instance AntisymmRel.decidableRel {α : Type u_1} {r : ααProp} [DecidableRel r] :
      Equations
        @[simp]
        theorem antisymmRel_iff_eq {α : Type u_1} {a b : α} {r : ααProp} [Std.Refl r] [Std.Antisymm r] :
        AntisymmRel r a b a = b
        theorem AntisymmRel.eq {α : Type u_1} {a b : α} {r : ααProp} [Std.Refl r] [Std.Antisymm r] :
        AntisymmRel r a ba = b

        Alias of the forward direction of antisymmRel_iff_eq.

        theorem Mathlib.Tactic.GCongr.AntisymmRel.left {α : Type u_3} {a b : α} {r : ααProp} (h : AntisymmRel r a b) :
        r a b
        theorem Mathlib.Tactic.GCongr.AntisymmRel.right {α : Type u_3} {a b : α} {r : ααProp} (h : AntisymmRel r a b) :
        r b a

        See if the term is AntisymmRel r a b and the goal is r a b.

        Equations
          Instances For

            See if the term is AntisymmRel r a b and the goal is r b a.

            Equations
              Instances For
                theorem AntisymmRel.le {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                a b
                theorem AntisymmRel.ge {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                b a
                def AntisymmRel.setoid (α : Type u_1) (r : ααProp) [IsPreorder α r] :

                The antisymmetrization relation as an equivalence relation.

                Equations
                  Instances For
                    @[simp]
                    theorem AntisymmRel.setoid_r (α : Type u_1) (r : ααProp) [IsPreorder α r] (a b : α) :
                    (setoid α r) a b = AntisymmRel r a b
                    def Antisymmetrization (α : Type u_1) (r : ααProp) [IsPreorder α r] :
                    Type u_1

                    The partial order derived from a preorder by making pairwise comparable elements equal. This is the quotient by fun a b => a ≤ b ∧ b ≤ a.

                    Equations
                      Instances For
                        def toAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
                        αAntisymmetrization α r

                        Turn an element into its antisymmetrization.

                        Equations
                          Instances For
                            noncomputable def ofAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
                            Antisymmetrization α rα

                            Get a representative from the antisymmetrization.

                            Equations
                              Instances For
                                instance instInhabitedAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] [Inhabited α] :
                                Equations
                                  theorem Antisymmetrization.ind {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} :
                                  (∀ (a : α), p (toAntisymmetrization r a))∀ (q : Antisymmetrization α r), p q
                                  theorem Antisymmetrization.induction_on {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} (a : Antisymmetrization α r) (h : ∀ (a : α), p (toAntisymmetrization r a)) :
                                  p a
                                  theorem le_iff_lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
                                  a b a < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b
                                  theorem LE.le.lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
                                  a ba < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b

                                  Alias of the forward direction of le_iff_lt_or_antisymmRel.

                                  theorem le_of_le_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                  a c
                                  theorem le_of_antisymmRel_of_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
                                  a c
                                  theorem LE.le.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                  a c

                                  Alias of le_of_le_of_antisymmRel.

                                  theorem AntisymmRel.trans_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
                                  a c

                                  Alias of le_of_antisymmRel_of_le.

                                  theorem lt_of_lt_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                  a < c
                                  theorem lt_of_antisymmRel_of_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
                                  a < c
                                  theorem LT.lt.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                  a < c

                                  Alias of lt_of_lt_of_antisymmRel.

                                  theorem AntisymmRel.trans_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
                                  a < c

                                  Alias of lt_of_antisymmRel_of_lt.

                                  theorem not_lt_of_antisymmRel {α : Type u_1} {a b : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                  ¬a < b
                                  theorem not_gt_of_antisymmRel {α : Type u_1} {a b : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                  ¬b < a
                                  theorem AntisymmRel.not_lt {α : Type u_1} {a b : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                  ¬a < b

                                  Alias of not_lt_of_antisymmRel.

                                  theorem AntisymmRel.not_gt {α : Type u_1} {a b : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                  ¬b < a

                                  Alias of not_gt_of_antisymmRel.

                                  theorem not_antisymmRel_of_lt {α : Type u_1} {a b : α} [Preorder α] :
                                  a < b¬AntisymmRel (fun (x1 x2 : α) => x1 x2) a b
                                  theorem not_antisymmRel_of_gt {α : Type u_1} {a b : α} [Preorder α] :
                                  b < a¬AntisymmRel (fun (x1 x2 : α) => x1 x2) a b
                                  theorem LT.lt.not_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
                                  a < b¬AntisymmRel (fun (x1 x2 : α) => x1 x2) a b

                                  Alias of not_antisymmRel_of_lt.

                                  theorem LT.lt.not_antisymmRel_symm {α : Type u_1} {a b : α} [Preorder α] :
                                  b < a¬AntisymmRel (fun (x1 x2 : α) => x1 x2) a b

                                  Alias of not_antisymmRel_of_gt.

                                  instance instTransLeAntisymmRel {α : Type u_1} [Preorder α] :
                                  Trans (fun (x1 x2 : α) => x1 x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
                                  Equations
                                    instance instTransAntisymmRelLe {α : Type u_1} [Preorder α] :
                                    Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
                                    Equations
                                      instance instTransLtAntisymmRelLe {α : Type u_1} [Preorder α] :
                                      Trans (fun (x1 x2 : α) => x1 < x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
                                      Equations
                                        instance instTransAntisymmRelLeLt {α : Type u_1} [Preorder α] :
                                        Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2
                                        Equations
                                          theorem AntisymmRel.le_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                                          a c b d
                                          theorem AntisymmRel.le_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                          a c b c
                                          theorem AntisymmRel.le_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                          a b a c
                                          theorem AntisymmRel.lt_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                                          a < c b < d
                                          theorem AntisymmRel.lt_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                          a < c b < c
                                          theorem AntisymmRel.lt_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                          a < b a < c
                                          theorem AntisymmRel.antisymmRel_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                                          AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b d
                                          theorem AntisymmRel.antisymmRel_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                          AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b c
                                          theorem AntisymmRel.antisymmRel_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                          AntisymmRel (fun (x1 x2 : α) => x1 x2) a b AntisymmRel (fun (x1 x2 : α) => x1 x2) a c
                                          theorem AntisymmRel.image {α : Type u_1} {β : Type u_2} {a b : α} [Preorder α] [Preorder β] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) {f : αβ} (hf : Monotone f) :
                                          AntisymmRel (fun (x1 x2 : β) => x1 x2) (f a) (f b)
                                          instance instPartialOrderAntisymmetrization {α : Type u_1} [Preorder α] :
                                          PartialOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                                          Equations
                                            theorem antisymmetrization_fibration {α : Type u_1} [Preorder α] :
                                            Relation.Fibration (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
                                            theorem acc_antisymmetrization_iff {α : Type u_1} {a : α} [Preorder α] :
                                            Acc (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) Acc (fun (x1 x2 : α) => x1 < x2) a
                                            instance instLinearOrderAntisymmetrizationLeOfDecidableLEOfDecidableLTOfTotal {α : Type u_1} [Preorder α] [DecidableLE α] [DecidableLT α] [Std.Total fun (x1 x2 : α) => x1 x2] :
                                            LinearOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                                            Equations
                                              @[simp]
                                              theorem toAntisymmetrization_le_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
                                              toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
                                              @[simp]
                                              theorem toAntisymmetrization_lt_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
                                              toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
                                              @[simp]
                                              theorem ofAntisymmetrization_le_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
                                              ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
                                              @[simp]
                                              theorem ofAntisymmetrization_lt_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
                                              ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
                                              theorem toAntisymmetrization_mono {α : Type u_1} [Preorder α] :
                                              Monotone (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
                                              def OrderHom.antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
                                              (Antisymmetrization α fun (x1 x2 : α) => x1 x2) →o Antisymmetrization β fun (x1 x2 : β) => x1 x2

                                              Turns an order homomorphism from α to β into one from Antisymmetrization α to Antisymmetrization β. Antisymmetrization is actually a functor. See Preorder_to_PartialOrder.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem OrderHom.coe_antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
                                                  theorem OrderHom.antisymmetrization_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
                                                  @[simp]
                                                  theorem OrderHom.antisymmetrization_apply_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : α) :
                                                  f.antisymmetrization (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) = toAntisymmetrization (fun (x1 x2 : β) => x1 x2) (f a)
                                                  noncomputable def OrderEmbedding.ofAntisymmetrization (α : Type u_1) [Preorder α] :
                                                  (Antisymmetrization α fun (x1 x2 : α) => x1 x2) ↪o α

                                                  ofAntisymmetrization as an order embedding.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem OrderEmbedding.ofAntisymmetrization_apply (α : Type u_1) [Preorder α] (a✝ : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
                                                      (ofAntisymmetrization α) a✝ = _root_.ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a✝
                                                      def OrderIso.dualAntisymmetrization (α : Type u_1) [Preorder α] :
                                                      (Antisymmetrization α fun (x1 x2 : α) => x1 x2)ᵒᵈ ≃o Antisymmetrization αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2

                                                      Antisymmetrization and orderDual commute.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem OrderIso.dualAntisymmetrization_apply (α : Type u_1) [Preorder α] (a : α) :
                                                          (dualAntisymmetrization α) (OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)) = toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)
                                                          @[simp]
                                                          theorem OrderIso.dualAntisymmetrization_symm_apply (α : Type u_1) [Preorder α] (a : α) :
                                                          (dualAntisymmetrization α).symm (toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)) = OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)
                                                          theorem AntisymmRel.symmGen {α : Type u_1} {a b : α} {r : ααProp} (h : AntisymmRel r a b) :
                                                          theorem Relation.SymmGen.of_lt {α : Type u_1} {a b : α} [Preorder α] (h : a < b) :
                                                          SymmGen (fun (x1 x2 : α) => x1 x2) a b
                                                          theorem Relation.SymmGen.of_gt {α : Type u_1} {a b : α} [Preorder α] (h : b < a) :
                                                          SymmGen (fun (x1 x2 : α) => x1 x2) a b
                                                          theorem LT.lt.symmGen {α : Type u_1} {a b : α} [Preorder α] (h : a < b) :
                                                          Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a b

                                                          Alias of Relation.SymmGen.of_lt.

                                                          theorem LT.lt.symmGen_symm {α : Type u_1} {a b : α} [Preorder α] (h : b < a) :
                                                          Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a b

                                                          Alias of Relation.SymmGen.of_gt.

                                                          theorem Relation.SymmGen.of_symmGen_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : SymmGen (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                                          SymmGen (fun (x1 x2 : α) => x1 x2) a c
                                                          theorem Relation.SymmGen.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : SymmGen (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                                          SymmGen (fun (x1 x2 : α) => x1 x2) a c

                                                          Alias of Relation.SymmGen.of_symmGen_of_antisymmRel.

                                                          instance instTransSymmGenLeAntisymmRel {α : Type u_1} [Preorder α] :
                                                          Trans (Relation.SymmGen fun (x1 x2 : α) => x1 x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) (Relation.SymmGen fun (x1 x2 : α) => x1 x2)
                                                          Equations
                                                            theorem Relation.SymmGen.of_antisymmRel_of_symmGen {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : SymmGen (fun (x1 x2 : α) => x1 x2) b c) :
                                                            SymmGen (fun (x1 x2 : α) => x1 x2) a c
                                                            theorem AntisymmRel.trans_symmGen {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : Relation.SymmGen (fun (x1 x2 : α) => x1 x2) b c) :
                                                            Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a c

                                                            Alias of Relation.SymmGen.of_antisymmRel_of_symmGen.

                                                            instance instTransAntisymmRelLeSymmGen {α : Type u_1} [Preorder α] :
                                                            Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (Relation.SymmGen fun (x1 x2 : α) => x1 x2) (Relation.SymmGen fun (x1 x2 : α) => x1 x2)
                                                            Equations
                                                              theorem AntisymmRel.symmGen_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                                                              Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a c Relation.SymmGen (fun (x1 x2 : α) => x1 x2) b d
                                                              theorem AntisymmRel.symmGen_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                                                              Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a c Relation.SymmGen (fun (x1 x2 : α) => x1 x2) b c
                                                              theorem AntisymmRel.symmGen_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                                                              Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a b Relation.SymmGen (fun (x1 x2 : α) => x1 x2) a c
                                                              def Antisymmetrization.prodEquiv (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] :
                                                              (Antisymmetrization (α × β) fun (x1 x2 : α × β) => x1 x2) ≃o (Antisymmetrization α fun (x1 x2 : α) => x1 x2) × Antisymmetrization β fun (x1 x2 : β) => x1 x2

                                                              The antisymmetrization of a product preorder is order isomorphic to the product of antisymmetrizations.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem Antisymmetrization.prodEquiv_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {ab : α × β} :
                                                                  (prodEquiv α β) ab = (ab.1, ab.2)
                                                                  @[simp]
                                                                  theorem Antisymmetrization.prodEquiv_symm_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {a : α} {b : β} :