Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/BooleanAlgebra/Basic.lean

Statistics

MetricCount
DefinitionstoBiheytingAlgebra, toGeneralizedBooleanAlgebra, booleanAlgebra, generalizedBooleanAlgebra, toBooleanAlgebra, toGeneralizedCoheytingAlgebra, toOrderBot, instBooleanAlgebra, instBooleanAlgebra, instGeneralizedBooleanAlgebra, instBooleanAlgebra, instGeneralizedBooleanAlgebra
12
TheoremstoComplementedLattice, sdiff_eq_of_sup_eq, sdiff_unique, compl_eq_iff, codisjoint_himp_self_left, codisjoint_himp_self_right, codisjoint_iff_compl_le_left, codisjoint_iff_compl_le_right, compl_bijective, compl_comp_compl, compl_compl, compl_eq_bot, compl_eq_comm, compl_eq_iff_isCompl, compl_eq_top, compl_himp, compl_himp_compl, compl_inf, compl_inj_iff, compl_injective, compl_involutive, compl_le_compl_iff_le, compl_le_iff_compl_le, compl_le_of_compl_le, compl_le_self, compl_lt_compl_iff_lt, compl_lt_self, compl_sdiff, compl_sdiff_compl, compl_sup_eq_top, compl_surjective, disjoint_compl_left_iff, disjoint_compl_right_iff, disjoint_inf_sdiff, disjoint_sdiff_comm, disjoint_sdiff_iff_le, disjoint_sdiff_sdiff, disjoint_sdiff_self_left, disjoint_sdiff_self_right, eq_compl_comm, eq_compl_iff_isCompl, eq_of_sdiff_eq_sdiff, himp_eq, himp_eq_left, himp_le, himp_le_left, himp_ne_right, hnot_eq_compl, inf_compl_eq_bot', inf_inf_sdiff, inf_sdiff, inf_sdiff_assoc, inf_sdiff_distrib_left, inf_sdiff_distrib_right, inf_sdiff_eq_bot_iff, inf_sdiff_inf, inf_sdiff_left_comm, inf_sdiff_self_left, inf_sdiff_self_right, isCompl_compl, le_iff_disjoint_sdiff, le_iff_eq_sup_sdiff, le_sdiff, le_sdiff_right, sdiff_compl, sdiff_eq, sdiff_eq_comm, sdiff_eq_left, sdiff_eq_right, sdiff_eq_sdiff_iff_inf_eq_inf, sdiff_eq_self_iff_disjoint, sdiff_eq_self_iff_disjoint', sdiff_eq_symm, sdiff_inf_right_comm, sdiff_inf_sdiff, sdiff_le_sdiff_iff_le, sdiff_lt, sdiff_lt_left, sdiff_lt_sdiff_right, sdiff_ne_right, sdiff_sdiff_eq_sdiff_sup, sdiff_sdiff_eq_self, sdiff_sdiff_left', sdiff_sdiff_right, sdiff_sdiff_right', sdiff_sdiff_right_self, sdiff_sdiff_sdiff_cancel_left, sdiff_sdiff_sdiff_cancel_right, sdiff_sdiff_sup_sdiff, sdiff_sdiff_sup_sdiff', sdiff_sup, sdiff_unique, sup_compl_eq_top, sup_eq_sdiff_sup_sdiff_sup_inf, sup_inf_inf_compl, sup_inf_inf_sdiff, sup_inf_sdiff, sup_lt_of_lt_sdiff_left, sup_lt_of_lt_sdiff_right, sup_sdiff_inf, top_sdiff
101
Total113

BooleanAlgebra

Definitions

NameCategoryTheorems
toBiheytingAlgebra πŸ“–CompOp
345 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, Set.pairwise_disjoint_Ico_zsmul, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, codisjoint_bihimp_sup, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, toBoolRing_inf, compl_inf, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, BoolAlg.ext_iff, Finset.compl_inf, Set.toFinset_symmDiff, Order.Ideal.IsProper.notMem_or_compl_notMem, symmDiff_top, Set.isCompl_range_some_none, Set.indicator_symmDiff, pairwise_disjoint_fiber, Finset.compl_sup, Finset.inclusion_exclusion_card_inf_compl, bihimp_right_surjective, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, Types.monoOverEquivalenceSet_inverse_map, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, top_symmDiff, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Set.pairwise_disjoint_Ioo_add_intCast, Set.covBy_insert, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, disjoint_of_sSup_disjoint, himp_bihimp_left, bihimp_left_comm, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, Set.disjoint_powerset_insert, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, Set.offDiag_mono, bihimp_le_iff_right, TopologicalSpace.Clopens.coe_disjoint, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, bihimp_bihimp_self, Finset.inclusion_exclusion_sum_inf_compl, FinBoolAlg.forgetToFinPartOrdFaithful, compl_image_latticeClosure, toBoolAlg_add, Set.union_symmDiff_subset, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, Finset.isCoatom_compl_singleton, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, Int.isCompl_even_odd, himp_le, compl_lt_compl_iff_lt, Order.Ideal.isPrime_iff_mem_or_compl_mem, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, Finset.diffs_compls_eq_infs, Set.nsmul_right_monotone, compl_image_latticeClosure_eq_of_compl_image_eq_self, symmDiff_eq, Set.mulIndicator_symmDiff, OrderIso.compl_symm_apply, hnot_eq_compl, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, Set.empty_covBy_singleton, Coheyting.boundary_eq_bot, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, le_iff_atom_le_imp, ofBoolAlg_symmDiff, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, RingHom.asBoolAlg_comp, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, Types.monoOverEquivalenceSet_functor_map, BoolAlg.ofHom_id, BoolAlg.dual_map, disjoint_compl_left_iff, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.inter_symmDiff_distrib_right, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Set.one_notMem_inv_mul_iff, Set.preimage_eq_empty_iff, BoolAlg.comp_apply, Finset.mem_inf, TopologicalSpace.Clopens.surjective_finset_sup_prod, ofBoolRing_mul, Set.disjoint_image_inl_image_inr, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, BoundedLatticeHom.asBoolRing_id, Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, symmDiff_eq_Xor', Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, OrderIso.asBoolAlgAsBoolRing_apply, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, Set.pairwiseDisjoint_range_singleton, symmDiff_symmDiff_right', Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, BooleanSubalgebra.mem_carrier, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, Set.mulIndicator_eq_one, BooleanSubalgebra.coe_subtype, Types.monoOverEquivalenceSet_inverse_obj, BooleanSubalgebra.inclusion_rfl, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, Set.pairwise_disjoint_Ico_intCast, SimpleGraph.disjoint_fromEdgeSet, Set.pairwiseDisjoint_fiber, Finset.isCoatom_iff, bihimp_bihimp_bihimp_comm, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, BooleanSubalgebra.mem_map_equiv, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, BoundedLatticeHomClass.toBiheytingHomClass, bihimp_isAssociative, BooleanSubalgebra.supClosed, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, FinBoolAlg.dual_map, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, BoolAlg.id_apply, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, eq_iff_atom_le_iff, toBoolRing_symmDiff, bihimp_himp_right, bihimp_assoc, Set.symmDiff_union_subset, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, Finset.card_truncatedSup_union_add_card_truncatedSup_infs, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, BoolAlg.ofHom_apply, BoolAlg.forget_map, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn
toGeneralizedBooleanAlgebra πŸ“–CompOp
31 mathmath: RingEquiv.asBoolRingAsBoolAlg_apply, MeasureTheory.preimage_spanningSetsIndex_singleton, toBoolRing_inf, BoxIntegral.Prepartition.isPartitionDisjUnionOfEqDiff, biUnion_range_succ_disjointed, MeasureTheory.spanningSetsIndex_eq_iff, disjointed_eq_inter_compl, RingEquiv.asBoolRingAsBoolAlg_symm_apply, ofBoolRing_add, iUnion_disjointed, Finset.diffs_compls_eq_infs, ofBoolRing_le_ofBoolRing_iff, ofBoolRing_zero, biUnion_Iic_disjointed, MeasureTheory.NullMeasurableSet.disjointed, iSup_disjointed, MeasureTheory.mem_disjointed_spanningSetsIndex, MeasureTheory.OuterMeasure.isCaratheodory_disjointed, ofBoolRing_mul, Finset.infs_compls_eq_diffs, disjointed_eq_inf_compl, Finset.compls_infs_eq_diffs, MeasurableSet.disjointed, disjointed_subset, preimage_find_eq_disjointed, MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq, toBoolRing_symmDiff, MeasureTheory.sum_restrict_disjointed_spanningSets, toBoolRing_bot, biUnion_Ioc_disjointed_of_monotone, MeasureTheory.IsSetRing.disjointed_mem

Theorems

NameKindAssumesProvesValidatesDepends On
toComplementedLattice πŸ“–mathematicalβ€”ComplementedLattice
DistribLattice.toLattice
toDistribLattice
toBoundedOrder
β€”isCompl_compl

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
sdiff_eq_of_sup_eq πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiffβ€”inf_eq_right
LE.le.trans
le_sup_left
Eq.le
sdiff_unique
eq_bot
sdiff_unique πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiffβ€”sdiff_unique
sup_inf_right
inf_sup_right
sup_comm
inf_sup_self
inf_comm
inf_eq_right
sup_eq_left
inf_assoc
eq_bot
inf_bot_eq

Function.Injective

Definitions

NameCategoryTheorems
booleanAlgebra πŸ“–CompOpβ€”
generalizedBooleanAlgebra πŸ“–CompOpβ€”

GeneralizedBooleanAlgebra

Definitions

NameCategoryTheorems
toBooleanAlgebra πŸ“–CompOpβ€”
toGeneralizedCoheytingAlgebra πŸ“–CompOp
92 mathmath: le_sdiff_right, disjoint_sdiff_self_right, inf_symmDiff_distrib_right, sdiff_symmDiff, sdiff_sdiff_sup_sdiff', symmDiff_symmDiff_self', sup_inf_inf_sdiff, symmDiff_right_comm, Booleanisation.comp_lt_comp, symmDiff_left_inj, disjoint_symmDiff_inf, symmDiff_assoc, Finpartition.mem_avoid, sdiff_sup, sdiff_symmDiff', Fintype.sup_disjointed, disjoint_sdiff_comm, sdiff_lt_left, UV.sup_sdiff_mem_of_mem_compression_of_notMem, symmDiff_sdiff_right, symmDiff_left_involutive, symmDiff_sdiff_left, symmDiff_symmDiff_right, UV.le_of_mem_compression_of_notMem, symmDiff_right_inj, sup_eq_sdiff_sup_sdiff_sup_inf, disjointed_add_one, disjointed_le_id, Booleanisation.lift_le_lift, partialSups_disjointed, sdiff_sdiff_right, sdiff_inf_right_comm, disjoint_disjointed_of_lt, symmDiff_eq_right, le_sdiff, le_symmDiff_iff_right, symmDiff_left_surjective, sdiff_sdiff_sup_sdiff, inf_symmDiff_distrib_left, symmDiff_isAssociative, Booleanisation.lift_sdiff_comp, Finset.sup_sdiff_right, disjointed_le, inf_sdiff_assoc, Booleanisation.liftLatticeHom_injective, Booleanisation.lift_lt_lift, sdiff_sdiff_right', symmDiff_symmDiff_left, symmDiff_symmDiff_cancel_left, Booleanisation.comp_sup_comp, Booleanisation.comp_sdiff_lift, le_symmDiff_iff_left, UV.disjoint_of_mem_compression_of_notMem, Booleanisation.lift_lt_comp, symmDiff_right_surjective, Fintype.exists_disjointed_le, disjointed_succ, inf_sdiff, sdiff_eq_self_iff_disjoint, disjointed_apply, Booleanisation.comp_inf_comp, inf_sdiff_distrib_right, symmDiff_left_injective, symmDiff_eq_left, Booleanisation.lift_inf_lift, symmDiff_right_injective, sdiff_eq_sdiff_iff_inf_eq_inf, disjoint_disjointed, sdiff_eq_left, inf_sdiff_left_comm, symmDiff_eq_sup, Booleanisation.lift_sup_lift, sdiff_sdiff_right_self, sdiff_symmDiff_left, symmDiff_left_comm, symmDiff_right_involutive, Booleanisation.lift_le_comp, symmDiff_symmDiff_symmDiff_comm, sdiff_eq_self_iff_disjoint', partialSups_add_one_eq_sup_disjointed, Finpartition.parts_extendOfLE_of_eq, inf_sdiff_distrib_left, disjoint_sdiff_self_left, sdiff_sdiff_left', symmDiff_symmDiff_cancel_right, sup_sdiff_injOn, disjointed_partialSups, Booleanisation.comp_le_comp, Finset.disjiUnion_Iic_disjointed, sdiff_symmDiff_right, sup_sdiff_symmDiff, Finpartition.avoid_parts_val
toOrderBot πŸ“–CompOp
33 mathmath: disjoint_sdiff_self_right, disjoint_sdiff_iff_le, Finpartition.parts_subset_extendOfLE, disjoint_symmDiff_inf, le_iff_disjoint_sdiff, Finpartition.mem_avoid, sup_Ioc_disjointed_of_monotone, Fintype.sup_disjointed, disjoint_sdiff_comm, sdiff_lt_left, Finpartition.parts_extendOfLE_of_lt, disjoint_disjointed_of_lt, le_sdiff, le_symmDiff_iff_right, Finset.sup_sdiff_right, le_symmDiff_iff_left, UV.disjoint_of_mem_compression_of_notMem, Booleanisation.lift_lt_comp, Fintype.exists_disjointed_le, disjoint_inf_sdiff, sdiff_eq_self_iff_disjoint, disjointed_apply, disjoint_disjointed, sdiff_eq_left, symmDiff_eq_sup, Booleanisation.lift_le_comp, sdiff_eq_self_iff_disjoint', Finpartition.parts_extendOfLE_of_eq, disjoint_sdiff_self_left, sup_sdiff_injOn, Finset.disjiUnion_Iic_disjointed, disjoint_sdiff_sdiff, Finpartition.avoid_parts_val

IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
compl_eq_iff πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
Compl.compl
BooleanAlgebra.toCompl
β€”compl_inj_iff
compl_eq

OrderDual

Definitions

NameCategoryTheorems
instBooleanAlgebra πŸ“–CompOp
2 mathmath: BoolAlg.dual_map, FinBoolAlg.dual_map

Pi

Definitions

NameCategoryTheorems
instBooleanAlgebra πŸ“–CompOpβ€”
instGeneralizedBooleanAlgebra πŸ“–CompOpβ€”

Prod

Definitions

NameCategoryTheorems
instBooleanAlgebra πŸ“–CompOpβ€”
instGeneralizedBooleanAlgebra πŸ“–CompOpβ€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_himp_self_left πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
HImp.himp
BooleanAlgebra.toHImp
β€”disjoint_sdiff_self_left
codisjoint_himp_self_right πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
HImp.himp
BooleanAlgebra.toHImp
β€”disjoint_sdiff_self_right
codisjoint_iff_compl_le_left πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
Compl.compl
BooleanAlgebra.toCompl
β€”hnot_le_iff_codisjoint_left
codisjoint_iff_compl_le_right πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
Compl.compl
BooleanAlgebra.toCompl
β€”hnot_le_iff_codisjoint_right
compl_bijective πŸ“–mathematicalβ€”Function.Bijective
Compl.compl
BooleanAlgebra.toCompl
β€”Function.Involutive.bijective
compl_involutive
compl_comp_compl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”compl_compl
compl_compl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”IsCompl.compl_eq
IsCompl.symm
isCompl_compl
compl_eq_bot πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
Bot.bot
BooleanAlgebra.toBot
Top.top
BooleanAlgebra.toTop
β€”IsCompl.compl_eq_iff
isCompl_top_bot
compl_eq_comm πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”compl_eq_iff_isCompl
eq_compl_iff_isCompl
compl_eq_iff_isCompl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
IsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
β€”isCompl_compl
IsCompl.compl_eq
compl_eq_top πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
Bot.bot
BooleanAlgebra.toBot
β€”IsCompl.compl_eq_iff
isCompl_bot_top
compl_himp πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
HImp.himp
BooleanAlgebra.toHImp
BooleanAlgebra.toSDiff
β€”compl_sdiff
compl_himp_compl πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
Compl.compl
BooleanAlgebra.toCompl
β€”compl_sdiff_compl
compl_inf πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”hnot_inf_distrib
compl_inj_iff πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”compl_injective
compl_injective πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”Function.Involutive.injective
compl_involutive
compl_involutive πŸ“–mathematicalβ€”Function.Involutive
Compl.compl
BooleanAlgebra.toCompl
β€”compl_compl
compl_le_compl_iff_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”compl_le_compl
compl_compl
compl_le_iff_compl_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”compl_le_of_compl_le
compl_le_of_compl_le πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”β€”compl_compl
compl_le_compl
compl_le_self πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”compl_compl
le_compl_self
compl_lt_compl_iff_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”lt_iff_lt_of_le_iff_le'
compl_le_compl_iff_le
compl_lt_self πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”compl_compl
lt_compl_self
compl_sdiff πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
BooleanAlgebra.toSDiff
HImp.himp
BooleanAlgebra.toHImp
β€”sdiff_eq
himp_eq
compl_inf
compl_compl
sup_comm
compl_sdiff_compl πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
Compl.compl
BooleanAlgebra.toCompl
β€”sdiff_compl
sdiff_eq
inf_comm
compl_sup_eq_top πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”sup_comm
sup_compl_eq_top
compl_surjective πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”Function.Involutive.surjective
compl_involutive
disjoint_compl_left_iff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
Preorder.toLE
PartialOrder.toPreorder
β€”le_compl_iff_disjoint_left
compl_compl
disjoint_compl_right_iff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
Preorder.toLE
PartialOrder.toPreorder
β€”le_compl_iff_disjoint_right
compl_compl
disjoint_inf_sdiff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toOrderBot
SemilatticeInf.toMin
GeneralizedBooleanAlgebra.toSDiff
β€”disjoint_iff_inf_le
Eq.le
inf_inf_sdiff
disjoint_sdiff_comm πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”sdiff_inf_right_comm
inf_sdiff_assoc
disjoint_sdiff_iff_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”le_of_inf_le_sup_le
le_trans
Disjoint.le_bot
bot_le
sup_sdiff_cancel_right
le_imp_le_of_le_of_le
sup_le_sup
le_refl
sdiff_le
sup_eq_right
Disjoint.mono_left
disjoint_sdiff_self_right
disjoint_sdiff_sdiff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”disjoint_iff_inf_le
Eq.le
sdiff_inf_sdiff
disjoint_sdiff_self_left πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”disjoint_iff_inf_le
Eq.le
inf_sdiff_self_left
disjoint_sdiff_self_right πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”disjoint_iff_inf_le
Eq.le
inf_sdiff_self_right
eq_compl_comm πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
β€”compl_eq_iff_isCompl
eq_compl_iff_isCompl
eq_compl_iff_isCompl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
IsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
β€”IsCompl.symm
isCompl_compl
IsCompl.eq_compl
eq_of_sdiff_eq_sdiff πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”β€”sdiff_sdiff_eq_self
himp_eq πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
Compl.compl
BooleanAlgebra.toCompl
β€”BooleanAlgebra.himp_eq
himp_eq_left πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
Top.top
BooleanAlgebra.toTop
β€”Codisjoint.eq_iff
codisjoint_himp_self_left
himp_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HImp.himp
BooleanAlgebra.toHImp
Codisjoint
CoheytingAlgebra.toOrderTop
β€”le_sdiff
codisjoint_comm
himp_le_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HImp.himp
BooleanAlgebra.toHImp
Top.top
BooleanAlgebra.toTop
β€”codisjoint_self
Codisjoint.mono_right
codisjoint_himp_self_right
LE.le.trans
le_top
Eq.ge
himp_ne_right πŸ“–β€”β€”β€”β€”Iff.not
himp_eq_left
not_and_or
hnot_eq_compl πŸ“–mathematicalβ€”HNot.hnot
BiheytingAlgebra.toHNot
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”β€”
inf_compl_eq_bot' πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
Compl.compl
BooleanAlgebra.toCompl
Bot.bot
BooleanAlgebra.toBot
β€”bot_unique
BooleanAlgebra.inf_compl_le_bot
inf_inf_sdiff πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”GeneralizedBooleanAlgebra.inf_inf_sdiff
inf_sdiff πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”sdiff_unique
sup_inf_left
sup_inf_right
sup_sdiff_self_right
inf_sup_right
inf_sdiff_sup_right
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
inf_sup_self
sup_inf_inf_sdiff
inf_comm
sup_eq_left
inf_le_inf
sdiff_le
inf_sdiff_self_right
inf_bot_eq
bot_inf_eq
inf_sdiff_assoc πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”sdiff_unique
inf_assoc
inf_sup_left
sup_inf_sdiff
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
inf_inf_sdiff
inf_bot_eq
inf_sdiff_distrib_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”sdiff_inf
sdiff_eq_bot_iff
inf_le_left
bot_sup_eq
inf_sdiff_assoc
inf_sdiff_distrib_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”inf_comm
inf_sdiff_distrib_left
inf_sdiff_eq_bot_iff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”disjoint_iff
disjoint_sdiff_iff_le
inf_sdiff_inf πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”inf_comm
inf_inf_sdiff
inf_sdiff_left_comm πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”inf_comm
inf_sdiff_self_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”inf_comm
inf_sdiff_self_right
inf_sdiff_self_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”sup_inf_sdiff
inf_sup_right
inf_comm
inf_inf_sdiff
sdiff_inf_sdiff
bot_sup_eq
isCompl_compl πŸ“–mathematicalβ€”IsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
BooleanAlgebra.toBoundedOrder
Compl.compl
BooleanAlgebra.toCompl
β€”IsCompl.of_eq
inf_compl_eq_bot'
sup_compl_eq_top
le_iff_disjoint_sdiff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
β€”disjoint_sdiff_iff_le
le_iff_eq_sup_sdiff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”le_antisymm
sup_inf_sdiff
sup_le_sup
inf_eq_right
le_refl
le_imp_le_of_le_of_le
sup_sdiff_left
le_of_inf_le_sup_le
inf_sdiff_self_right
bot_le
Eq.le
sup_sdiff_cancel_right
le_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
β€”LE.le.trans
sdiff_le
Disjoint.mono_left
disjoint_sdiff_self_left
Disjoint.sdiff_eq_left
sdiff_le_sdiff_right
le_sdiff_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”disjoint_self
Disjoint.mono_right
disjoint_sdiff_self_right
LE.le.trans
Eq.le
bot_le
sdiff_compl πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
Compl.compl
BooleanAlgebra.toCompl
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
β€”sdiff_eq
compl_compl
sdiff_eq πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
Compl.compl
BooleanAlgebra.toCompl
β€”BooleanAlgebra.sdiff_eq
sdiff_eq_comm πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiffβ€”sdiff_eq_symm
sdiff_eq_left πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
β€”Disjoint.mono_left
Eq.ge
disjoint_sdiff_self_left
Disjoint.sdiff_eq_left
sdiff_eq_right πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”Disjoint.eq_iff
disjoint_sdiff_self_left
sdiff_eq_sdiff_iff_inf_eq_inf πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”eq_of_inf_eq_sup_eq
inf_inf_sdiff
sup_inf_sdiff
sdiff_inf_self_right
inf_comm
sdiff_eq_self_iff_disjoint πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
β€”sdiff_eq_left
disjoint_comm
sdiff_eq_self_iff_disjoint' πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
β€”sdiff_eq_left
sdiff_eq_symm πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”β€”sdiff_sdiff_eq_self
sdiff_inf_right_comm πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”inf_comm
inf_sdiff_assoc
sdiff_inf_sdiff πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”inf_inf_sdiff
sup_inf_sdiff
inf_sup_left
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
inf_idem
inf_sup_right
inf_comm
bot_sup_eq
inf_of_le_right
sdiff_le_sdiff_iff_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiffβ€”sdiff_sdiff_eq_self
sdiff_le_sdiff_left
sdiff_lt πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Preorder.toLT
GeneralizedBooleanAlgebra.toSDiff
β€”LE.le.lt_of_ne
sdiff_le
disjoint_iff
sdiff_eq_left
inf_eq_right
sdiff_lt_left πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
β€”lt_iff_le_and_ne
sdiff_eq_self_iff_disjoint
sdiff_le
sdiff_lt_sdiff_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Preorder.toLE
GeneralizedBooleanAlgebra.toSDiffβ€”LE.le.lt_of_not_ge
sdiff_le_sdiff_right
LT.lt.le
LT.lt.not_ge
LE.le.trans
le_sdiff_sup
sup_le_of_le_sdiff_right
sdiff_ne_right πŸ“–β€”β€”β€”β€”Iff.not
sdiff_eq_right
not_and_or
sdiff_sdiff_eq_sdiff_sup πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_sdiff_right'
inf_eq_right
sdiff_sdiff_eq_self πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiffβ€”sdiff_sdiff_right_self
inf_of_le_right
sdiff_sdiff_left' πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”sdiff_sdiff_left
sdiff_sup
sdiff_sdiff_right πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sup_comm
inf_comm
inf_assoc
sup_inf_inf_sdiff
sdiff_unique
sup_inf_right
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
sup_inf_self
sup_sdiff_left
sup_assoc
sup_inf_left
inf_sup_right
inf_sdiff_sup_right
inf_sup_left
sup_inf_sdiff
inf_sup_self
inf_sdiff_self_left
bot_inf_eq
inf_bot_eq
bot_sup_eq
inf_sdiff_left
inf_sdiff_self_right
sdiff_sdiff_right' πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_sdiff_right
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
sup_inf_inf_sdiff
sup_comm
inf_comm
sdiff_sdiff_right_self πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”sdiff_sdiff_right
inf_idem
sdiff_self
bot_sup_eq
sdiff_sdiff_sdiff_cancel_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiffβ€”LE.le.antisymm
sdiff_sdiff_sdiff_le_sdiff
Disjoint.le_sdiff_of_le_left
Disjoint.mono_left
sdiff_le
disjoint_sdiff_self_right
sdiff_le_sdiff_right
sdiff_sdiff_sdiff_cancel_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiffβ€”le_antisymm_iff
sdiff_le_comm
sdiff_sdiff_sdiff_le_sdiff
Disjoint.le_sdiff_of_le_left
Disjoint.mono_right
sdiff_le
disjoint_sdiff_self_left
sdiff_le_sdiff_left
sdiff_sdiff_sup_sdiff πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_sup
sdiff_sdiff_right
sup_inf_left
sup_comm
sup_inf_sdiff
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
inf_idem
sdiff_sdiff_sup_sdiff' πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_sup
sdiff_sdiff_right
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
sup_inf_right
sdiff_sup πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_unique
sup_inf_left
inf_sup_left
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
sup_inf_sdiff
sup_inf_self
inf_idem
inf_sup_right
inf_inf_sdiff
bot_inf_eq
bot_sup_eq
inf_comm
inf_bot_eq
sdiff_unique πŸ“–mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Bot.bot
GeneralizedBooleanAlgebra.toBot
GeneralizedBooleanAlgebra.toSDiffβ€”eq_of_inf_eq_sup_eq
inf_comm
inf_inf_sdiff
sup_comm
sup_inf_sdiff
sup_compl_eq_top πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
BooleanAlgebra.toDistribLattice
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”top_unique
BooleanAlgebra.top_le_sup_compl
sup_eq_sdiff_sup_sdiff_sup_inf πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sup_inf_left
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
sup_of_le_right
sup_sdiff_self
sdiff_sup_self
inf_of_le_left
sup_inf_inf_compl πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Compl.compl
BooleanAlgebra.toCompl
β€”sdiff_eq
sup_inf_sdiff
sup_inf_inf_sdiff πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedBooleanAlgebra.toSDiff
β€”inf_assoc
sup_inf_right
sup_inf_sdiff
inf_sup_right
inf_sdiff_left
sup_inf_sdiff πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedBooleanAlgebra.toSDiff
β€”GeneralizedBooleanAlgebra.sup_inf_sdiff
sup_lt_of_lt_sdiff_left πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Preorder.toLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_sdiff_cancel_right
LE.le.lt_of_not_ge
sup_le_sup_left
LT.lt.le
LT.lt.not_ge
sdiff_idem
LE.le.trans
sdiff_le_sdiff_of_sup_le_sup_left
sdiff_le
sup_lt_of_lt_sdiff_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Preorder.toLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_sup_cancel
lt_of_le_not_ge
le_imp_le_of_le_of_le
sup_le_sup
le_of_lt
le_refl
LT.lt.not_ge
sdiff_idem
LE.le.trans
sdiff_le_sdiff_of_sup_le_sup_right
sdiff_le
sup_sdiff_inf πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
GeneralizedBooleanAlgebra.toDistribLattice
GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sup_comm
sup_inf_sdiff
top_sdiff πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
Top.top
BooleanAlgebra.toTop
Compl.compl
BooleanAlgebra.toCompl
β€”top_sdiff'

---

← Back to Index