toBiheytingAlgebra π | CompOp | 345 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, Set.pairwise_disjoint_Ico_zsmul, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, codisjoint_bihimp_sup, BoolAlg.hasForgetToBoolRing_forgetβ_obj_carrier, toBoolRing_inf, compl_inf, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, BoolAlg.ext_iff, Finset.compl_inf, Set.toFinset_symmDiff, Order.Ideal.IsProper.notMem_or_compl_notMem, symmDiff_top, Set.isCompl_range_some_none, Set.indicator_symmDiff, pairwise_disjoint_fiber, Finset.compl_sup, Finset.inclusion_exclusion_card_inf_compl, bihimp_right_surjective, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, Types.monoOverEquivalenceSet_inverse_map, BoolAlg.hasForgetToBoolRing_forgetβ_map, top_symmDiff, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Set.pairwise_disjoint_Ioo_add_intCast, Set.covBy_insert, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, disjoint_of_sSup_disjoint, himp_bihimp_left, bihimp_left_comm, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, Set.disjoint_powerset_insert, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ_map, Set.offDiag_mono, bihimp_le_iff_right, TopologicalSpace.Clopens.coe_disjoint, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, bihimp_bihimp_self, Finset.inclusion_exclusion_sum_inf_compl, FinBoolAlg.forgetToFinPartOrdFaithful, compl_image_latticeClosure, toBoolAlg_add, Set.union_symmDiff_subset, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, Finset.isCoatom_compl_singleton, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, Int.isCompl_even_odd, himp_le, compl_lt_compl_iff_lt, Order.Ideal.isPrime_iff_mem_or_compl_mem, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, Finset.diffs_compls_eq_infs, Set.nsmul_right_monotone, compl_image_latticeClosure_eq_of_compl_image_eq_self, symmDiff_eq, Set.mulIndicator_symmDiff, OrderIso.compl_symm_apply, hnot_eq_compl, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, Set.empty_covBy_singleton, Coheyting.boundary_eq_bot, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, le_iff_atom_le_imp, ofBoolAlg_symmDiff, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, RingHom.asBoolAlg_comp, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, Types.monoOverEquivalenceSet_functor_map, BoolAlg.ofHom_id, BoolAlg.dual_map, disjoint_compl_left_iff, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.inter_symmDiff_distrib_right, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Set.one_notMem_inv_mul_iff, Set.preimage_eq_empty_iff, BoolAlg.comp_apply, Finset.mem_inf, TopologicalSpace.Clopens.surjective_finset_sup_prod, ofBoolRing_mul, Set.disjoint_image_inl_image_inr, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, BoundedLatticeHom.asBoolRing_id, Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, symmDiff_eq_Xor', Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, OrderIso.asBoolAlgAsBoolRing_apply, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, Set.pairwiseDisjoint_range_singleton, symmDiff_symmDiff_right', Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, BooleanSubalgebra.mem_carrier, BoolAlg.hasForgetToHeytAlg_forgetβ_obj_coe, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, Set.mulIndicator_eq_one, BooleanSubalgebra.coe_subtype, Types.monoOverEquivalenceSet_inverse_obj, BooleanSubalgebra.inclusion_rfl, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, Set.pairwise_disjoint_Ico_intCast, SimpleGraph.disjoint_fromEdgeSet, Set.pairwiseDisjoint_fiber, Finset.isCoatom_iff, bihimp_bihimp_bihimp_comm, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_map, BooleanSubalgebra.mem_map_equiv, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, BoundedLatticeHomClass.toBiheytingHomClass, bihimp_isAssociative, BooleanSubalgebra.supClosed, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, FinBoolAlg.dual_map, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, BoolAlg.id_apply, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, eq_iff_atom_le_iff, toBoolRing_symmDiff, bihimp_himp_right, bihimp_assoc, Set.symmDiff_union_subset, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, Finset.card_truncatedSup_union_add_card_truncatedSup_infs, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, BoolAlg.ofHom_apply, BoolAlg.forget_map, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn
|