Documentation

Mathlib.Order.BooleanAlgebra.Basic

Basic properties of Boolean algebras #

This file provides some basic definitions, functions as well as lemmas for functions and type classes related to Boolean algebras as defined in Mathlib/Order/BooleanAlgebra/Defs.lean.

References #

Tags #

generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl

Generalized Boolean algebras #

Some of the lemmas in this section are from:

@[simp]
theorem sup_inf_sdiff {α : Type u} [GeneralizedBooleanAlgebra α] (x y : α) :
xyx \ y = x
@[simp]
theorem inf_inf_sdiff {α : Type u} [GeneralizedBooleanAlgebra α] (x y : α) :
xyx \ y =
@[simp]
theorem sup_sdiff_inf {α : Type u} [GeneralizedBooleanAlgebra α] (x y : α) :
x \ yxy = x
@[simp]
theorem inf_sdiff_inf {α : Type u} [GeneralizedBooleanAlgebra α] (x y : α) :
x \ y(xy) =
theorem disjoint_inf_sdiff {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
Disjoint (xy) (x \ y)
theorem sdiff_unique {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (s : xyz = x) (i : xyz = ) :
x \ y = z
@[simp]
theorem sdiff_inf_sdiff {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ yy \ x =
theorem disjoint_sdiff_sdiff {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
Disjoint (x \ y) (y \ x)
@[simp]
theorem inf_sdiff_self_right {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
xy \ x =
@[simp]
theorem inf_sdiff_self_left {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
y \ xx =
theorem le_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
x y \ z x y Disjoint x z
@[simp]
theorem sdiff_eq_left {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ y = x Disjoint x y
theorem Disjoint.sdiff_eq_of_sup_eq {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hi : Disjoint x z) (hs : xz = y) :
y \ x = z
theorem Disjoint.sdiff_unique {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hd : Disjoint x z) (hz : z y) (hs : y xz) :
y \ x = z
theorem disjoint_sdiff_iff_le {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hz : z y) (hx : x y) :
Disjoint z (y \ x) z x
theorem le_iff_disjoint_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hz : z y) (hx : x y) :
z x Disjoint z (y \ x)
theorem inf_sdiff_eq_bot_iff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hz : z y) (hx : x y) :
zy \ x = z x
theorem le_iff_eq_sup_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hz : z y) (hx : x y) :
x z y = zy \ x
theorem sdiff_sup {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
y \ (xz) = y \ xy \ z
theorem sdiff_eq_sdiff_iff_inf_eq_inf {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
y \ x = y \ z yx = yz
@[deprecated sdiff_eq_left (since := "2025-10-12")]
theorem sdiff_eq_self_iff_disjoint' {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ y = x Disjoint x y

Alias of sdiff_eq_left.

theorem sdiff_lt {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] (hx : y x) (hy : y ) :
x \ y < x
theorem sdiff_lt_left {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ y < x ¬Disjoint y x
@[simp]
theorem le_sdiff_right {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x y \ x x =
@[simp]
theorem sdiff_eq_right {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ y = y x = y =
theorem sdiff_ne_right {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ y y x y
theorem sdiff_lt_sdiff_right {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (h : x < y) (hz : z x) :
x \ z < y \ z
theorem sup_inf_inf_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
xyzy \ z = xyy \ z
theorem sdiff_sdiff_right {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
x \ (y \ z) = x \ yxyz
theorem sdiff_sdiff_right' {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
x \ (y \ z) = x \ yxz
theorem sdiff_sdiff_eq_sdiff_sup {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (h : z x) :
x \ (y \ z) = x \ yz
@[simp]
theorem sdiff_sdiff_right_self {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
x \ (x \ y) = xy
theorem sdiff_sdiff_eq_self {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] (h : y x) :
x \ (x \ y) = y
theorem sdiff_eq_symm {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hy : y x) (h : x \ y = z) :
x \ z = y
theorem sdiff_eq_comm {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hy : y x) (hz : z x) :
x \ y = z x \ z = y
theorem eq_of_sdiff_eq_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hxz : x z) (hyz : y z) (h : z \ x = z \ y) :
x = y
theorem sdiff_le_sdiff_iff_le {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hx : x z) (hy : y z) :
z \ x z \ y y x
theorem sdiff_sdiff_left' {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
(x \ y) \ z = x \ yx \ z
theorem sdiff_sdiff_sup_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
z \ (x \ yy \ x) = z(z \ xy)(z \ yx)
theorem sdiff_sdiff_sup_sdiff' {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
z \ (x \ yy \ x) = zxyz \ xz \ y
theorem sdiff_sdiff_sdiff_cancel_left {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hca : z x) :
(x \ y) \ (x \ z) = z \ y
theorem sdiff_sdiff_sdiff_cancel_right {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (hcb : z y) :
(x \ z) \ (y \ z) = x \ y
theorem inf_sdiff {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
(xy) \ z = x \ zy \ z
theorem inf_sdiff_assoc {α : Type u} [GeneralizedBooleanAlgebra α] (x y z : α) :
(xy) \ z = xy \ z

See also sdiff_inf_right_comm.

theorem sdiff_inf_right_comm {α : Type u} [GeneralizedBooleanAlgebra α] (x y z : α) :
x \ zy = (xy) \ z

See also inf_sdiff_assoc.

theorem inf_sdiff_left_comm {α : Type u} [GeneralizedBooleanAlgebra α] (a b c : α) :
ab \ c = ba \ c
theorem inf_sdiff_distrib_left {α : Type u} [GeneralizedBooleanAlgebra α] (a b c : α) :
ab \ c = (ab) \ (ac)
theorem inf_sdiff_distrib_right {α : Type u} [GeneralizedBooleanAlgebra α] (a b c : α) :
a \ bc = (ac) \ (bc)
theorem disjoint_sdiff_comm {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] :
Disjoint (x \ z) y Disjoint x (y \ z)
theorem sup_eq_sdiff_sup_sdiff_sup_inf {α : Type u} {x y : α} [GeneralizedBooleanAlgebra α] :
xy = x \ yy \ xxy
theorem sup_lt_of_lt_sdiff_left {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (h : y < z \ x) (hxz : x z) :
xy < z
theorem sup_lt_of_lt_sdiff_right {α : Type u} {x y z : α} [GeneralizedBooleanAlgebra α] (h : x < z \ y) (hyz : y z) :
xy < z
instance Pi.instGeneralizedBooleanAlgebra {ι : Type u_2} {α : ιType u_3} [(i : ι) → GeneralizedBooleanAlgebra (α i)] :
GeneralizedBooleanAlgebra ((i : ι) → α i)
Equations

    Boolean algebras #

    @[reducible, inline]

    A bounded generalized Boolean algebra is a Boolean algebra.

    Equations
      Instances For
        theorem inf_compl_eq_bot' {α : Type u} {x : α} [BooleanAlgebra α] :
        xx =
        @[simp]
        theorem sup_compl_eq_top {α : Type u} {x : α} [BooleanAlgebra α] :
        xx =
        @[simp]
        theorem compl_sup_eq_top {α : Type u} {x : α} [BooleanAlgebra α] :
        xx =
        theorem isCompl_compl {α : Type u} {x : α} [BooleanAlgebra α] :
        theorem sdiff_eq {α : Type u} {x y : α} [BooleanAlgebra α] :
        x \ y = xy
        theorem himp_eq {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y = yx
        @[simp]
        theorem hnot_eq_compl {α : Type u} {x : α} [BooleanAlgebra α] :
        theorem top_sdiff {α : Type u} {x : α} [BooleanAlgebra α] :
        \ x = x
        theorem eq_compl_iff_isCompl {α : Type u} {x y : α} [BooleanAlgebra α] :
        x = y IsCompl x y
        theorem compl_eq_iff_isCompl {α : Type u} {x y : α} [BooleanAlgebra α] :
        x = y IsCompl x y
        theorem compl_eq_comm {α : Type u} {x y : α} [BooleanAlgebra α] :
        x = y y = x
        theorem eq_compl_comm {α : Type u} {x y : α} [BooleanAlgebra α] :
        x = y y = x
        @[simp]
        theorem compl_compl {α : Type u} [BooleanAlgebra α] (x : α) :
        @[simp]
        theorem compl_inj_iff {α : Type u} {x y : α} [BooleanAlgebra α] :
        x = y x = y
        theorem IsCompl.compl_eq_iff {α : Type u} {x y z : α} [BooleanAlgebra α] (h : IsCompl x y) :
        z = y z = x
        @[simp]
        theorem compl_eq_top {α : Type u} {x : α} [BooleanAlgebra α] :
        @[simp]
        theorem compl_eq_bot {α : Type u} {x : α} [BooleanAlgebra α] :
        @[simp]
        theorem compl_inf {α : Type u} {x y : α} [BooleanAlgebra α] :
        (xy) = xy
        @[simp]
        theorem compl_le_compl_iff_le {α : Type u} {x y : α} [BooleanAlgebra α] :
        y x x y
        @[simp]
        theorem compl_lt_compl_iff_lt {α : Type u} {x y : α} [BooleanAlgebra α] :
        y < x x < y
        theorem compl_le_of_compl_le {α : Type u} {x y : α} [BooleanAlgebra α] (h : y x) :
        x y
        theorem compl_le_iff_compl_le {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y y x
        @[simp]
        theorem compl_le_self {α : Type u} {x : α} [BooleanAlgebra α] :
        x x x =
        @[simp]
        theorem compl_lt_self {α : Type u} {x : α} [BooleanAlgebra α] [Nontrivial α] :
        x < x x =
        @[simp]
        theorem sdiff_compl {α : Type u} {x y : α} [BooleanAlgebra α] :
        x \ y = xy
        @[simp]
        theorem sup_inf_inf_compl {α : Type u} {x y : α} [BooleanAlgebra α] :
        xyxy = x
        theorem compl_sdiff {α : Type u} {x y : α} [BooleanAlgebra α] :
        (x \ y) = x y
        @[simp]
        theorem compl_himp {α : Type u} {x y : α} [BooleanAlgebra α] :
        (x y) = x \ y
        theorem compl_sdiff_compl {α : Type u} {x y : α} [BooleanAlgebra α] :
        x \ y = y \ x
        @[simp]
        theorem compl_himp_compl {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y = y x
        theorem himp_le {α : Type u} {x y z : α} [BooleanAlgebra α] :
        x y z y z Codisjoint x z
        @[simp]
        theorem himp_le_left {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y x x =
        @[simp]
        theorem himp_eq_left {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y = x x = y =
        theorem himp_ne_right {α : Type u} {x y : α} [BooleanAlgebra α] :
        x y x x y
        instance Prod.instBooleanAlgebra {α : Type u} {β : Type u_1} [BooleanAlgebra α] [BooleanAlgebra β] :
        Equations
          instance Pi.instBooleanAlgebra {ι : Type u} {α : ιType v} [(i : ι) → BooleanAlgebra (α i)] :
          BooleanAlgebra ((i : ι) → α i)
          Equations
            @[reducible, inline]
            abbrev Function.Injective.generalizedBooleanAlgebra {α : Type u} {β : Type u_1} [Max α] [Min α] [LE α] [LT α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : αβ) (hf : Injective f) (le : ∀ {x y : α}, f x f y x y) (lt : ∀ {x y : α}, f x < f y x < y) (map_sup : ∀ (a b : α), f (ab) = f af b) (map_inf : ∀ (a b : α), f (ab) = f af b) (map_bot : f = ) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

            Pullback a GeneralizedBooleanAlgebra along an injection.

            Equations
              Instances For
                @[reducible, inline]
                abbrev Function.Injective.booleanAlgebra {α : Type u} {β : Type u_1} [Max α] [Min α] [LE α] [LT α] [Top α] [Bot α] [Compl α] [SDiff α] [HImp α] [BooleanAlgebra β] (f : αβ) (hf : Injective f) (le : ∀ {x y : α}, f x f y x y) (lt : ∀ {x y : α}, f x < f y x < y) (map_sup : ∀ (a b : α), f (ab) = f af b) (map_inf : ∀ (a b : α), f (ab) = f af b) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) (map_himp : ∀ (a b : α), f (a b) = f a f b) :

                Pullback a BooleanAlgebra along an injection.

                Equations
                  Instances For