Documentation Verification Report

BddOrd

πŸ“ Source: Mathlib/Order/Category/BddOrd.lean

Statistics

MetricCount
DefinitionsBddOrd, hom, hom, hom', mk, dual, dualEquiv, hasForgetToBipointed, hasForgetToPartOrd, instCategory, instCoeSortType, instConcreteCategoryBoundedOrderHomCarrier, instInhabited, isBoundedOrder, of, ofHom, toPartOrd
17
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, bddOrd_dual_comp_forget_to_bipointed, bddOrd_dual_comp_forget_to_partOrd
28
Total45

BddOrd

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
6 mathmath: bddOrd_dual_comp_forget_to_bipointed, dualEquiv_functor, dual_map, bddOrd_dual_comp_forget_to_partOrd, bddLat_dual_comp_forget_to_bddOrd, dualEquiv_inverse
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToBipointed πŸ“–CompOp
1 mathmath: bddOrd_dual_comp_forget_to_bipointed
hasForgetToPartOrd πŸ“–CompOp
4 mathmath: BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd
instCategory πŸ“–CompOp
25 mathmath: bddOrd_dual_comp_forget_to_bipointed, dualEquiv_functor, coe_id, hom_id, ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_hom, dual_map, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, forget_map, id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_inv, hom_comp, hom_inv_apply, comp_apply, BddLat.coe_forget_to_bddOrd, ofHom_apply, ofHom_comp, ofHom_id, coe_comp, inv_hom_apply, dualEquiv_inverse
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryBoundedOrderHomCarrier πŸ“–CompOp
16 mathmath: bddOrd_dual_comp_forget_to_bipointed, coe_id, ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, forget_map, id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, hom_inv_apply, comp_apply, BddLat.coe_forget_to_bddOrd, ofHom_apply, coe_comp, inv_hom_apply
instInhabited πŸ“–CompOpβ€”
isBoundedOrder πŸ“–CompOp
22 mathmath: bddOrd_dual_comp_forget_to_bipointed, coe_id, hom_id, ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_hom, dual_map, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, forget_map, id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_inv, hom_comp, hom_inv_apply, comp_apply, BddLat.coe_forget_to_bddOrd, ofHom_apply, ofHom_hom, coe_comp, inv_hom_apply
of πŸ“–CompOp
5 mathmath: hom_ofHom, coe_of, ofHom_apply, ofHom_comp, ofHom_id
ofHom πŸ“–CompOp
8 mathmath: Iso.mk_hom, dual_map, hom_ofHom, Iso.mk_inv, ofHom_apply, ofHom_comp, ofHom_id, ofHom_hom
toPartOrd πŸ“–CompOp
23 mathmath: bddOrd_dual_comp_forget_to_bipointed, coe_id, hom_id, ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_hom, dual_map, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, forget_map, id_apply, coe_of, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Iso.mk_inv, hom_comp, hom_inv_apply, comp_apply, BddLat.coe_forget_to_bddOrd, ofHom_apply, ofHom_hom, coe_comp, inv_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”PartOrd.carrier
toPartOrd
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
BddOrd
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
BddOrd
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
BddOrd
instCategory
dual
ofHom
OrderDual
PartOrd.carrier
toPartOrd
OrderDual.instPartialOrder
PartOrd.str
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
isBoundedOrder
DFunLike.coe
Equiv
BoundedOrderHom
OrderDual.instPreorder
EquivLike.toFunLike
Equiv.instEquivLike
BoundedOrderHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
BddOrd
instCategory
CategoryTheory.types
CategoryTheory.forget
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
BddOrd
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedOrderHom.comp
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
BddOrd
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedOrderHom.id
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
CategoryTheory.ConcreteCategory.hom
BddOrd
instCategory
BoundedOrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
PartOrd.str
isBoundedOrder
BoundedOrderHom.instFunLike
instConcreteCategoryBoundedOrderHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
BoundedOrderHom.comp
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.comp
BddOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
PartOrd.carrier
toPartOrd
PartOrd.str
isBoundedOrder
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
BoundedOrderHom.id
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.id
BddOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

BddOrd.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: BddOrd.hom_id, BddOrd.dual_map, BddOrd.hom_ofHom, BddOrd.hom_comp, BddOrd.hom_ext_iff, BddOrd.ofHom_hom
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

BddOrd.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

BddOrd.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
BddOrd
BddOrd.instCategory
BddOrd.ofHom
PartOrd.carrier
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHomClass.toBoundedOrderHom
OrderIso
BddOrd.toPartOrd
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
BddOrd
BddOrd.instCategory
BddOrd.ofHom
PartOrd.carrier
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHomClass.toBoundedOrderHom
OrderIso
BddOrd.toPartOrd
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
BddOrd πŸ“–CompData
25 mathmath: bddOrd_dual_comp_forget_to_bipointed, BddOrd.dualEquiv_functor, BddOrd.coe_id, BddOrd.hom_id, BddOrd.ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, BddOrd.Iso.mk_hom, BddOrd.dual_map, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, BddOrd.forget_map, BddOrd.id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddOrd.Iso.mk_inv, BddOrd.hom_comp, BddOrd.hom_inv_apply, BddOrd.comp_apply, BddLat.coe_forget_to_bddOrd, BddOrd.ofHom_apply, BddOrd.ofHom_comp, BddOrd.ofHom_id, BddOrd.coe_comp, BddOrd.inv_hom_apply, BddOrd.dualEquiv_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
bddOrd_dual_comp_forget_to_bipointed πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddOrd
BddOrd.instCategory
Bipointed
Bipointed.largeCategory
BddOrd.dual
CategoryTheory.forgetβ‚‚
BoundedOrderHom
PartOrd.carrier
BddOrd.toPartOrd
PartialOrder.toPreorder
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
Bipointed.HomSubtype
Bipointed.X
Bipointed.instFunLikeHomSubtypeX
Bipointed.hasForget
BddOrd.hasForgetToBipointed
Bipointed.swap
β€”β€”
bddOrd_dual_comp_forget_to_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddOrd
BddOrd.instCategory
PartOrd
PartOrd.instCategory
BddOrd.dual
CategoryTheory.forgetβ‚‚
BoundedOrderHom
PartOrd.carrier
BddOrd.toPartOrd
PartialOrder.toPreorder
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
OrderHom
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
BddOrd.hasForgetToPartOrd
PartOrd.dual
β€”β€”

---

← Back to Index