Documentation

Mathlib.Order.Category.BddOrd

The category of bounded orders #

This defines BddOrd, the category of bounded orders.

structure BddOrdextends PartOrd :
Type (u_1 + 1)

The category of bounded orders with monotone functions.

Instances For
    @[reducible, inline]
    abbrev BddOrd.of (X : Type u_1) [PartialOrder X] [BoundedOrder X] :

    Construct a bundled BddOrd from the underlying type and typeclass.

    Equations
      Instances For
        structure BddOrd.Hom (X Y : BddOrd) :

        The type of morphisms in BddOrd R.

        Instances For
          theorem BddOrd.Hom.ext_iff {X Y : BddOrd} {x y : X.Hom Y} :
          x = y โ†” x.hom' = y.hom'
          theorem BddOrd.Hom.ext {X Y : BddOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          @[reducible, inline]
          abbrev BddOrd.Hom.hom {X Y : BddOrd} (f : X.Hom Y) :

          Turn a morphism in BddOrd back into a BoundedOrderHom.

          Equations
            Instances For
              @[reducible, inline]

              Typecheck a BoundedOrderHom as a morphism in BddOrd.

              Equations
                Instances For
                  def BddOrd.Hom.Simps.hom (X Y : BddOrd) (f : X.Hom Y) :

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem BddOrd.ext {X Y : BddOrd} {f g : X โŸถ Y} (w : โˆ€ (x : โ†‘X.toPartOrd), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem BddOrd.hom_ext {X Y : BddOrd} {f g : X โŸถ Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      @[simp]
                      theorem BddOrd.ofHom_hom {X Y : BddOrd} (f : X โŸถ Y) :
                      @[simp]
                      theorem BddOrd.dual_map {Xโœ Yโœ : BddOrd} (f : Xโœ โŸถ Yโœ) :
                      def BddOrd.Iso.mk {ฮฑ ฮฒ : BddOrd} (e : โ†‘ฮฑ.toPartOrd โ‰ƒo โ†‘ฮฒ.toPartOrd) :
                      ฮฑ โ‰… ฮฒ

                      Constructs an equivalence between bounded orders from an order isomorphism between them.

                      Equations
                        Instances For
                          @[simp]
                          theorem BddOrd.Iso.mk_inv {ฮฑ ฮฒ : BddOrd} (e : โ†‘ฮฑ.toPartOrd โ‰ƒo โ†‘ฮฒ.toPartOrd) :
                          (mk e).inv = ofHom โ†‘e.symm
                          @[simp]
                          theorem BddOrd.Iso.mk_hom {ฮฑ ฮฒ : BddOrd} (e : โ†‘ฮฑ.toPartOrd โ‰ƒo โ†‘ฮฒ.toPartOrd) :
                          (mk e).hom = ofHom โ†‘e

                          The equivalence between BddOrd and itself induced by OrderDual both ways.

                          Equations
                            Instances For