The category of bounded orders with monotone functions.
- str : PartialOrder โself.toPartOrd
- isBoundedOrder : BoundedOrder โself.toPartOrd
Instances For
@[reducible, inline]
Construct a bundled BddOrd from the underlying type and typeclass.
Equations
Instances For
The type of morphisms in BddOrd R.
- hom' : BoundedOrderHom โX.toPartOrd โY.toPartOrd
The underlying
BoundedOrderHom.
Instances For
Equations
instance
BddOrd.instConcreteCategoryBoundedOrderHomCarrier :
CategoryTheory.ConcreteCategory BddOrd fun (x1 x2 : BddOrd) => BoundedOrderHom โx1.toPartOrd โx2.toPartOrd
Equations
@[reducible, inline]
abbrev
BddOrd.ofHom
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
:
Typecheck a BoundedOrderHom as a morphism in BddOrd.
Equations
Instances For
def
BddOrd.Hom.Simps.hom
(X Y : BddOrd)
(f : X.Hom Y)
:
BoundedOrderHom โX.toPartOrd โY.toPartOrd
Use the ConcreteCategory.hom projection for @[simps] lemmas.
Equations
Instances For
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
BddOrd.ext
{X Y : BddOrd}
{f g : X โถ Y}
(w : โ (x : โX.toPartOrd), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
BddOrd.ext_iff
{X Y : BddOrd}
{f g : X โถ Y}
:
f = g โ โ (x : โX.toPartOrd), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
theorem
BddOrd.hom_ofHom
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
:
@[simp]
@[simp]
@[simp]
theorem
BddOrd.ofHom_comp
{X Y Z : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
[PartialOrder Z]
[BoundedOrder Z]
(f : BoundedOrderHom X Y)
(g : BoundedOrderHom Y Z)
:
theorem
BddOrd.ofHom_apply
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
(x : X)
:
Equations
Equations
@[simp]
Constructs an equivalence between bounded orders from an order isomorphism between them.