Category of partial orders #
This defines PartOrd, the category of partial orders with monotone maps.
The category of partial orders.
- of :: (
- carrier : Type u_1
The underlying partially ordered type.
- str : PartialOrder βself
- )
Instances For
Equations
instance
PartOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory PartOrd fun (x1 x2 : PartOrd) => βx1 βo βx2
Equations
@[reducible, inline]
Typecheck a OrderHom as a morphism in PartOrd.
Equations
Instances For
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
PartOrd.ext
{X Y : PartOrd}
{f g : X βΆ Y}
(w : β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
PartOrd.ext_iff
{X Y : PartOrd}
{f g : X βΆ Y}
:
f = g β β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
PartOrd.ofHom_comp
{X Y Z : Type u}
[PartialOrder X]
[PartialOrder Y]
[PartialOrder Z]
(f : X βo Y)
(g : Y βo Z)
:
theorem
PartOrd.ofHom_apply
{X Y : Type u}
[PartialOrder X]
[PartialOrder Y]
(f : X βo Y)
(x : X)
:
Equations
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
Instances For
@[simp]
@[simp]
@[simp]
preordToPartOrd is left adjoint to the forgetful functor, meaning it is the free
functor from Preord to PartOrd.
Equations
Instances For
PreordToPartOrd and OrderDual commute.
Equations
Instances For
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe
(X : Preord)
(a : β((preordToPartOrd.comp PartOrd.dual).obj X))
:
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe
(X : Preord)
(a : β((Preord.dual.comp preordToPartOrd).obj X))
:
@[simp]
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe'
(X : Preord)
(a : β(preordToPartOrd.obj (Preord.dual.obj X)))
: