Equations
instance
Preord.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory Preord fun (x1 x2 : Preord) => βx1 βo βx2
Equations
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
Preord.ext
{X Y : Preord}
{f g : X βΆ Y}
(w : β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
Preord.ext_iff
{X Y : Preord}
{f g : X βΆ Y}
:
f = g β β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]