Documentation Verification Report

Preord

📁 Source: Mathlib/Order/Category/Preord.lean

Statistics

MetricCount
DefinitionsPreord, hom, hom, hom', mk, carrier, dual, dualEquiv, instCategory, instCoeSortType, instConcreteCategoryOrderHomCarrier, instInhabited, ofHom, str, preordToCat
15
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, instFaithfulPreordCatPreordToCat, instFullPreordCatPreordToCat, preordToCat_map, preordToCat_obj
30
Total45

Preord

Definitions

NameCategoryTheorems
carrier 📖CompOp
30 mathmath: alexDiscEquivPreord_inverse_obj_carrier, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, coe_id, ext_iff, inv_hom_apply, hom_inv_apply, alexDiscEquivPreord_inverse_obj_str, ofHom_apply, alexDiscEquivPreord_inverse_map, id_apply, hom_id, coe_of, forget_map, hom_comp, Iso.mk_hom, dual_map, alexDiscEquivPreord_unitIso, coe_comp, preordToCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToCat_map, topToPreord_obj_coe, SimplexCategory.toCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, Iso.mk_inv, alexDiscEquivPreord_counitIso, comp_apply, SimplexCategory.toCat_map, ofHom_hom, partOrd_dual_comp_forget_to_preord
dual 📖CompOp
7 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, dualEquiv_inverse, dualEquiv_functor, dual_map, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, partOrd_dual_comp_forget_to_preord
dualEquiv 📖CompOp
2 mathmath: dualEquiv_inverse, dualEquiv_functor
instCategory 📖CompOp
36 mathmath: ofHom_id, alexDiscEquivPreord_inverse_obj_carrier, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, coe_id, ext_iff, inv_hom_apply, hom_inv_apply, alexDiscEquivPreord_inverse_obj_str, ofHom_apply, dualEquiv_inverse, alexDiscEquivPreord_inverse_map, instFaithfulPreordCatPreordToCat, id_apply, hom_id, dualEquiv_functor, forget_map, instFullPreordCatPreordToCat, hom_comp, Iso.mk_hom, dual_map, alexDiscEquivPreord_unitIso, coe_comp, topToPreord_map, preordToCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToCat_map, topToPreord_obj_coe, SimplexCategory.toCat_obj, ofHom_comp, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, Iso.mk_inv, alexDiscEquivPreord_counitIso, comp_apply, SimplexCategory.toCat_map, partOrd_dual_comp_forget_to_preord, alexDiscEquivPreord_functor
instCoeSortType 📖CompOp
instConcreteCategoryOrderHomCarrier 📖CompOp
12 mathmath: coe_id, ext_iff, inv_hom_apply, hom_inv_apply, ofHom_apply, id_apply, forget_map, coe_comp, SimplexCategory.toCat_obj, comp_apply, SimplexCategory.toCat_map, partOrd_dual_comp_forget_to_preord
instInhabited 📖CompOp
ofHom 📖CompOp
9 mathmath: ofHom_id, hom_ofHom, ofHom_apply, Iso.mk_hom, dual_map, topToPreord_map, ofHom_comp, Iso.mk_inv, ofHom_hom
str 📖CompOp
27 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, coe_id, ext_iff, inv_hom_apply, hom_inv_apply, alexDiscEquivPreord_inverse_obj_str, ofHom_apply, alexDiscEquivPreord_inverse_map, id_apply, hom_id, forget_map, hom_comp, Iso.mk_hom, dual_map, alexDiscEquivPreord_unitIso, coe_comp, preordToCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToCat_map, SimplexCategory.toCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, Iso.mk_inv, alexDiscEquivPreord_counitIso, comp_apply, SimplexCategory.toCat_map, ofHom_hom, partOrd_dual_comp_forget_to_preord

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coe_id 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
coe_of 📖mathematicalcarrier
of
comp_apply 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
dualEquiv_functor 📖mathematicalCategoryTheory.Equivalence.functor
Preord
instCategory
dualEquiv
dual
dualEquiv_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Preord
instCategory
dualEquiv
dual
dual_map 📖mathematicalCategoryTheory.Functor.map
Preord
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instPreorder
str
DFunLike.coe
Equiv
OrderHom
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
Hom.hom
ext 📖DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.ConcreteCategory.hom_ext
ext_iff 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
Preord
instCategory
CategoryTheory.types
CategoryTheory.forget
OrderHom
carrier
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
hom_comp 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
Preord
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.comp
carrier
str
hom_ext 📖Hom.homHom.ext
hom_ext_iff 📖mathematicalHom.homhom_ext
hom_id 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
Preord
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.id
carrier
str
hom_inv_apply 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom 📖mathematicalHom.hom
of
ofHom
id_apply 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inv_hom_apply 📖mathematicalDFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply 📖mathematicalDFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
Preord
instCategory
OrderHom
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
ofHom
ofHom_comp 📖mathematicalofHom
OrderHom.comp
CategoryTheory.CategoryStruct.comp
Preord
CategoryTheory.Category.toCategoryStruct
instCategory
of
ofHom_hom 📖mathematicalofHom
carrier
str
Hom.hom
ofHom_id 📖mathematicalofHom
OrderHom.id
CategoryTheory.CategoryStruct.id
Preord
CategoryTheory.Category.toCategoryStruct
instCategory
of

Preord.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
11 mathmath: Preord.hom_ofHom, alexDiscEquivPreord_inverse_map, Preord.hom_id, Preord.hom_comp, Preord.dual_map, alexDiscEquivPreord_unitIso, preordToCat_map, alexDiscEquivPreord_counitIso, SimplexCategory.toCat_map, Preord.ofHom_hom, Preord.hom_ext_iff
hom' 📖CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖hom'
ext_iff 📖mathematicalhom'ext

Preord.Hom.Simps

Definitions

NameCategoryTheorems
hom 📖CompOp

Preord.Iso

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom 📖mathematicalCategoryTheory.Iso.hom
Preord
Preord.instCategory
Preord.ofHom
Preord.carrier
Preord.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
instFunLikeOrderIso
mk_inv 📖mathematicalCategoryTheory.Iso.inv
Preord
Preord.instCategory
Preord.ofHom
Preord.carrier
Preord.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm

(root)

Definitions

NameCategoryTheorems
Preord 📖CompData
36 mathmath: Preord.ofHom_id, alexDiscEquivPreord_inverse_obj_carrier, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, Preord.coe_id, Preord.ext_iff, Preord.inv_hom_apply, Preord.hom_inv_apply, alexDiscEquivPreord_inverse_obj_str, Preord.ofHom_apply, Preord.dualEquiv_inverse, alexDiscEquivPreord_inverse_map, instFaithfulPreordCatPreordToCat, Preord.id_apply, Preord.hom_id, Preord.dualEquiv_functor, Preord.forget_map, instFullPreordCatPreordToCat, Preord.hom_comp, Preord.Iso.mk_hom, Preord.dual_map, alexDiscEquivPreord_unitIso, Preord.coe_comp, topToPreord_map, preordToCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToCat_map, topToPreord_obj_coe, SimplexCategory.toCat_obj, Preord.ofHom_comp, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, Preord.Iso.mk_inv, alexDiscEquivPreord_counitIso, Preord.comp_apply, SimplexCategory.toCat_map, partOrd_dual_comp_forget_to_preord, alexDiscEquivPreord_functor
preordToCat 📖CompOp
4 mathmath: instFaithfulPreordCatPreordToCat, instFullPreordCatPreordToCat, preordToCat_obj, preordToCat_map

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulPreordCatPreordToCat 📖mathematicalCategoryTheory.Functor.Faithful
Preord
Preord.instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
preordToCat
Preord.hom_ext
OrderHom.ext
CategoryTheory.Functor.congr_obj
instFullPreordCatPreordToCat 📖mathematicalCategoryTheory.Functor.Full
Preord
Preord.instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
preordToCat
CategoryTheory.Functor.monotone
preordToCat_map 📖mathematicalCategoryTheory.Functor.map
Preord
Preord.instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
preordToCat
CategoryTheory.Functor.toCatHom
Preord.carrier
Preorder.smallCategory
Preord.str
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
Preord.Hom.hom
preordToCat_obj 📖mathematicalCategoryTheory.Functor.obj
Preord
Preord.instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
preordToCat
CategoryTheory.Cat.of
Preord.carrier
Preorder.smallCategory
Preord.str

---

← Back to Index