Documentation Verification Report

PartOrd

πŸ“ Source: Mathlib/Order/Category/PartOrd.lean

Statistics

MetricCount
DefinitionsPartOrd, hom, hom, hom', mk, carrier, dual, dualEquiv, hasForgetToPreord, instCategory, instCoeSortType, instConcreteCategoryOrderHomCarrier, ofHom, str, preordToPartOrd, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd, preordToPartOrdForgetAdjunction
17
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, partOrd_dual_comp_forget_to_preord, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe'
30
Total47

PartOrd

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
70 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, SemilatInfCat_dual_comp_forget_to_partOrd, bddOrd_dual_comp_forget_to_bipointed, BddOrd.coe_id, coe_of, BddOrd.hom_id, FinPartOrd.dualEquiv_unitIso, BddOrd.ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, coe_id, BddOrd.Iso.mk_hom, dual_map, BddOrd.dual_map, FinPartOrd.hom_hom_comp, FinBoolAlg.forgetToFinPartOrdFaithful, FinPartOrd.ofHom_hom_hom, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, FinPartOrd.dualEquiv_counitIso, coe_comp, SemilatInfCat.coe_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, BddOrd.forget_map, comp_apply, FinPartOrd.dual_map, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, inv_hom_apply, ofHom_hom, BddOrd.id_apply, BddOrd.coe_of, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, BddOrd.Iso.mk_inv, Lat_dual_comp_forget_to_partOrd, BddOrd.hom_comp, FinPartOrd.comp_apply, FinPartOrd.Iso.mk_inv, Iso.mk_hom, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', FinPartOrd.hom_id, SimplexCategory.toCat_obj, BddOrd.hom_inv_apply, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, BddOrd.comp_apply, FinPartOrd_dual_comp_forget_to_partOrd, Iso.mk_inv, BddLat.coe_forget_to_bddOrd, BddOrd.ofHom_apply, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, hom_inv_apply, BddOrd.ofHom_hom, forget_map, SemilatSupCat_dual_comp_forget_to_partOrd, ofHom_apply, hom_comp, BddOrd.coe_comp, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, FinPartOrd.hom_comp, SimplexCategory.toCat_map, FinPartOrd.Iso.mk_hom, SemilatSupCat.coe_forget_to_partOrd, partOrd_dual_comp_forget_to_preord, BddOrd.inv_hom_apply, ext_iff, FinPartOrd.id_apply, FinPartOrd.ofHom_hom, FinPartOrd.hom_hom_id, hom_id, id_apply
dual πŸ“–CompOp
13 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, SemilatInfCat_dual_comp_forget_to_partOrd, dual_map, dualEquiv_functor, bddOrd_dual_comp_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, Lat_dual_comp_forget_to_partOrd, dualEquiv_inverse, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, FinPartOrd_dual_comp_forget_to_partOrd, SemilatSupCat_dual_comp_forget_to_partOrd, partOrd_dual_comp_forget_to_preord
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToPreord πŸ“–CompOp
3 mathmath: SimplexCategory.toCat_obj, SimplexCategory.toCat_map, partOrd_dual_comp_forget_to_preord
instCategory πŸ“–CompOp
46 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, coe_id, dual_map, dualEquiv_functor, FinPartOrd.hom_ofHom, FinPartOrd.hom_hom_comp, FinPartOrd.ofHom_hom_hom, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, coe_comp, SemilatInfCat.coe_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, comp_apply, FinPartOrd.dual_map, inv_hom_apply, ofHom_id, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Lat_dual_comp_forget_to_partOrd, dualEquiv_inverse, Iso.mk_hom, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', FinPartOrd.hom_id, SimplexCategory.toCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, FinPartOrd_dual_comp_forget_to_partOrd, Iso.mk_inv, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, hom_inv_apply, forget_map, SemilatSupCat_dual_comp_forget_to_partOrd, ofHom_apply, hom_comp, FinPartOrd.hom_comp, SimplexCategory.toCat_map, SemilatSupCat.coe_forget_to_partOrd, partOrd_dual_comp_forget_to_preord, ofHom_comp, ext_iff, FinPartOrd.ofHom_hom, FinPartOrd.hom_hom_id, hom_id, id_apply, FinPartOrd.hom_hom_ofHom, FinPartOrd.hom_ext_iff
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryOrderHomCarrier πŸ“–CompOp
23 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, coe_id, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, coe_comp, SemilatInfCat.coe_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, comp_apply, inv_hom_apply, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Lat_dual_comp_forget_to_partOrd, SimplexCategory.toCat_obj, FinPartOrd_dual_comp_forget_to_partOrd, hom_inv_apply, forget_map, SemilatSupCat_dual_comp_forget_to_partOrd, ofHom_apply, SimplexCategory.toCat_map, SemilatSupCat.coe_forget_to_partOrd, partOrd_dual_comp_forget_to_preord, ext_iff, id_apply
ofHom πŸ“–CompOp
9 mathmath: dual_map, hom_ofHom, ofHom_hom, ofHom_id, Iso.mk_hom, Iso.mk_inv, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, ofHom_apply, ofHom_comp
str πŸ“–CompOp
58 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, SemilatInfCat_dual_comp_forget_to_partOrd, bddOrd_dual_comp_forget_to_bipointed, BddOrd.coe_id, BddOrd.hom_id, BddOrd.ext_iff, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, coe_id, BddOrd.Iso.mk_hom, dual_map, BddOrd.dual_map, FinPartOrd.hom_hom_comp, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, coe_comp, SemilatInfCat.coe_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, BddOrd.forget_map, comp_apply, FinPartOrd.dual_map, inv_hom_apply, ofHom_hom, BddOrd.id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddOrd.Iso.mk_inv, Lat_dual_comp_forget_to_partOrd, BddOrd.hom_comp, FinPartOrd.Iso.mk_inv, Iso.mk_hom, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', FinPartOrd.hom_id, SimplexCategory.toCat_obj, BddOrd.hom_inv_apply, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, BddOrd.comp_apply, FinPartOrd_dual_comp_forget_to_partOrd, Iso.mk_inv, BddLat.coe_forget_to_bddOrd, BddOrd.ofHom_apply, hom_inv_apply, BddOrd.ofHom_hom, forget_map, SemilatSupCat_dual_comp_forget_to_partOrd, ofHom_apply, hom_comp, BddOrd.coe_comp, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, FinPartOrd.hom_comp, SimplexCategory.toCat_map, FinPartOrd.Iso.mk_hom, SemilatSupCat.coe_forget_to_partOrd, partOrd_dual_comp_forget_to_preord, BddOrd.inv_hom_apply, ext_iff, FinPartOrd.hom_hom_id, hom_id, id_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
PartOrd
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
PartOrd
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
PartOrd
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instPartialOrder
str
DFunLike.coe
Equiv
OrderHom
PartialOrder.toPreorder
OrderDual.instPreorder
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
PartOrd
instCategory
CategoryTheory.types
CategoryTheory.forget
OrderHom
carrier
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
PartOrd
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.comp
carrier
PartialOrder.toPreorder
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
PartOrd
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.id
carrier
PartialOrder.toPreorder
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
PartOrd
instCategory
OrderHom
PartialOrder.toPreorder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
OrderHom.comp
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.comp
PartOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
OrderHom.id
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.id
PartOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

PartOrd.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
19 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, PartOrd.dual_map, PartOrd.hom_ofHom, FinPartOrd.hom_ofHom, FinPartOrd.hom_hom_comp, FinPartOrd.ofHom_hom_hom, PartOrd.hom_ext_iff, FinPartOrd.dual_map, PartOrd.ofHom_hom, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', FinPartOrd.hom_id, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, PartOrd.hom_comp, FinPartOrd.hom_comp, FinPartOrd.ofHom_hom, FinPartOrd.hom_hom_id, PartOrd.hom_id, FinPartOrd.hom_hom_ofHom, FinPartOrd.hom_ext_iff
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

PartOrd.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

PartOrd.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
PartOrd
PartOrd.instCategory
PartOrd.ofHom
PartOrd.carrier
PartOrd.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
PartOrd
PartOrd.instCategory
PartOrd.ofHom
PartOrd.carrier
PartOrd.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
PartOrd πŸ“–CompData
46 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, PartOrd.coe_id, PartOrd.dual_map, PartOrd.dualEquiv_functor, FinPartOrd.hom_ofHom, FinPartOrd.hom_hom_comp, FinPartOrd.ofHom_hom_hom, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddOrd_dual_comp_forget_to_partOrd, PartOrd.coe_comp, SemilatInfCat.coe_forget_to_partOrd, partOrdEmb_dual_comp_forget_to_pardOrd, PartOrd.comp_apply, FinPartOrd.dual_map, PartOrd.inv_hom_apply, PartOrd.ofHom_id, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Lat_dual_comp_forget_to_partOrd, PartOrd.dualEquiv_inverse, PartOrd.Iso.mk_hom, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', FinPartOrd.hom_id, SimplexCategory.toCat_obj, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe, FinPartOrd_dual_comp_forget_to_partOrd, PartOrd.Iso.mk_inv, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, PartOrd.hom_inv_apply, PartOrd.forget_map, SemilatSupCat_dual_comp_forget_to_partOrd, PartOrd.ofHom_apply, PartOrd.hom_comp, FinPartOrd.hom_comp, SimplexCategory.toCat_map, SemilatSupCat.coe_forget_to_partOrd, partOrd_dual_comp_forget_to_preord, PartOrd.ofHom_comp, PartOrd.ext_iff, FinPartOrd.ofHom_hom, FinPartOrd.hom_hom_id, PartOrd.hom_id, PartOrd.id_apply, FinPartOrd.hom_hom_ofHom, FinPartOrd.hom_ext_iff
preordToPartOrd πŸ“–CompOp
3 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd πŸ“–CompOp
3 mathmath: preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe
preordToPartOrdForgetAdjunction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
partOrd_dual_comp_forget_to_preord πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
PartOrd
PartOrd.instCategory
Preord
Preord.instCategory
PartOrd.dual
CategoryTheory.forgetβ‚‚
OrderHom
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
Preord.carrier
Preord.str
Preord.instConcreteCategoryOrderHomCarrier
PartOrd.hasForgetToPreord
Preord.dual
β€”β€”
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_hom_coe πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartOrd.carrier
CategoryTheory.Functor.obj
Preord
Preord.instCategory
PartOrd
PartOrd.instCategory
CategoryTheory.Functor.comp
preordToPartOrd
PartOrd.dual
Preord.dual
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.Hom.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.dualAntisymmetrization
Preord.carrier
Preord.str
β€”β€”
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartOrd.carrier
CategoryTheory.Functor.obj
Preord
Preord.instCategory
PartOrd
PartOrd.instCategory
CategoryTheory.Functor.comp
Preord.dual
preordToPartOrd
PartOrd.dual
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.Hom.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
OrderIso.dualAntisymmetrization
Preord.carrier
Preord.str
β€”β€”
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe' πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartOrd.carrier
CategoryTheory.Functor.obj
Preord
Preord.instCategory
PartOrd
PartOrd.instCategory
preordToPartOrd
Preord.dual
PartOrd.dual
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.Hom.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd
OrderIso
Antisymmetrization
OrderDual
Preord.carrier
OrderDual.instLE
Preorder.toLE
Preord.str
instIsPreorderLe
OrderDual.instPreorder
instPartialOrderAntisymmetrization
instFunLikeOrderIso
OrderIso.symm
OrderIso.dualAntisymmetrization
β€”β€”

---

← Back to Index