Documentation Verification Report

LinOrd

πŸ“ Source: Mathlib/Order/Category/LinOrd.lean

Statistics

MetricCount
DefinitionsLinOrd, hom, hom, hom', mk, dual, dualEquiv, hasForgetToLat, instCategory, instConcreteCategoryOrderHomCarrier, instInhabited, ofHom
12
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, linOrd_dual_comp_forget_to_Lat
27
Total39

LinOrd

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
5 mathmath: dual_map, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, dualEquiv_functor, linOrd_dual_comp_forget_to_Lat, dualEquiv_inverse
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToLat πŸ“–CompOp
3 mathmath: SimplexCategory.toCat_obj, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map
instCategory πŸ“–CompOp
32 mathmath: ofHom_apply, hom_id, dual_map, hom_inv_apply, inv_hom_apply, Iso.mk_hom, NonemptyFinLinOrd.hom_hom_ofHom, id_apply, NonemptyFinLinOrd.hom_comp, ofHom_id, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, NonemptyFinLinOrd.hom_ext_iff, NonemptyFinLinOrd.ofHom_hom, forget_map, ext_iff, NonemptyFinLinOrd.hom_hom_id, NonemptyFinLinOrd.dual_map, Iso.mk_inv, ofHom_comp, coe_id, NonemptyFinLinOrd.hom_hom_comp, SimplexCategory.toCat_obj, hom_comp, dualEquiv_functor, SimplexCategory.skeletalFunctor.coe_map, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, comp_apply, coe_comp, dualEquiv_inverse, NonemptyFinLinOrd.hom_id, NonemptyFinLinOrd.hom_ofHom
instConcreteCategoryOrderHomCarrier πŸ“–CompOp
13 mathmath: ofHom_apply, hom_inv_apply, inv_hom_apply, id_apply, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, forget_map, ext_iff, coe_id, SimplexCategory.toCat_obj, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, comp_apply, coe_comp
instInhabited πŸ“–CompOpβ€”
ofHom πŸ“–CompOp
8 mathmath: ofHom_apply, dual_map, Iso.mk_hom, ofHom_id, Iso.mk_inv, ofHom_comp, ofHom_hom, hom_ofHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
LinOrd
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
LinOrd
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LinOrd
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instLinearOrder
str
DFunLike.coe
Equiv
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderDual.instPreorder
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LinOrd
instCategory
CategoryTheory.types
CategoryTheory.forget
OrderHom
carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
LinOrd
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.comp
carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
LinOrd
CategoryTheory.Category.toCategoryStruct
instCategory
OrderHom.id
carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
LinOrd
instCategory
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
OrderHom.comp
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.comp
LinOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
OrderHom.id
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.id
LinOrd
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

LinOrd.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
16 mathmath: LinOrd.hom_id, LinOrd.dual_map, NonemptyFinLinOrd.hom_hom_ofHom, NonemptyFinLinOrd.hom_comp, NonemptyFinLinOrd.hom_ext_iff, NonemptyFinLinOrd.ofHom_hom, NonemptyFinLinOrd.hom_hom_id, NonemptyFinLinOrd.dual_map, LinOrd.hom_ext_iff, NonemptyFinLinOrd.hom_hom_comp, LinOrd.hom_comp, LinOrd.ofHom_hom, SimplexCategory.skeletalFunctor.coe_map, NonemptyFinLinOrd.hom_id, NonemptyFinLinOrd.hom_ofHom, LinOrd.hom_ofHom
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

LinOrd.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

LinOrd.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
LinOrd
LinOrd.instCategory
LinOrd.ofHom
LinOrd.carrier
LinOrd.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
LinOrd
LinOrd.instCategory
LinOrd.ofHom
LinOrd.carrier
LinOrd.str
OrderHomClass.toOrderHom
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
LinOrd πŸ“–CompData
32 mathmath: LinOrd.ofHom_apply, LinOrd.hom_id, LinOrd.dual_map, LinOrd.hom_inv_apply, LinOrd.inv_hom_apply, LinOrd.Iso.mk_hom, NonemptyFinLinOrd.hom_hom_ofHom, LinOrd.id_apply, NonemptyFinLinOrd.hom_comp, LinOrd.ofHom_id, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, NonemptyFinLinOrd.hom_ext_iff, NonemptyFinLinOrd.ofHom_hom, LinOrd.forget_map, LinOrd.ext_iff, NonemptyFinLinOrd.hom_hom_id, NonemptyFinLinOrd.dual_map, LinOrd.Iso.mk_inv, LinOrd.ofHom_comp, LinOrd.coe_id, NonemptyFinLinOrd.hom_hom_comp, SimplexCategory.toCat_obj, LinOrd.hom_comp, LinOrd.dualEquiv_functor, SimplexCategory.skeletalFunctor.coe_map, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, LinOrd.comp_apply, LinOrd.coe_comp, LinOrd.dualEquiv_inverse, NonemptyFinLinOrd.hom_id, NonemptyFinLinOrd.hom_ofHom

Theorems

NameKindAssumesProvesValidatesDepends On
linOrd_dual_comp_forget_to_Lat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
LinOrd
LinOrd.instCategory
Lat
Lat.instCategory
LinOrd.dual
CategoryTheory.forgetβ‚‚
OrderHom
LinOrd.carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
LinOrd.instConcreteCategoryOrderHomCarrier
LatticeHom
Lat.carrier
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
LinOrd.hasForgetToLat
Lat.dual
β€”β€”

---

← Back to Index