Equations
instance
LinOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory LinOrd fun (x1 x2 : LinOrd) => βx1 βo βx2
Equations
@[reducible, inline]
Typecheck a OrderHom as a morphism in LinOrd.
Equations
Instances For
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ext
{X Y : LinOrd}
{f g : X βΆ Y}
(w : β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
LinOrd.ext_iff
{X Y : LinOrd}
{f g : X βΆ Y}
:
f = g β β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ofHom_comp
{X Y Z : Type u}
[LinearOrder X]
[LinearOrder Y]
[LinearOrder Z]
(f : X βo Y)
(g : Y βo Z)
:
Equations
Constructs an equivalence between linear orders from an order isomorphism between them.
Equations
Instances For
@[simp]
@[simp]
@[simp]