Documentation

Mathlib.Order.Category.LinOrd

Category of linear orders #

This defines LinOrd, the category of linear orders with monotone maps.

structure LinOrd.Hom (X Y : LinOrd) :

The type of morphisms in LinOrd R.

Instances For
    theorem LinOrd.Hom.ext {X Y : LinOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
    x = y
    theorem LinOrd.Hom.ext_iff {X Y : LinOrd} {x y : X.Hom Y} :
    x = y ↔ x.hom' = y.hom'
    @[reducible, inline]
    abbrev LinOrd.Hom.hom {X Y : LinOrd} (f : X.Hom Y) :
    ↑X β†’o ↑Y

    Turn a morphism in LinOrd back into a OrderHom.

    Equations
      Instances For
        @[reducible, inline]
        abbrev LinOrd.ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X β†’o Y) :
        { carrier := X, str := inst✝ } ⟢ { carrier := Y, str := inst✝¹ }

        Typecheck a OrderHom as a morphism in LinOrd.

        Equations
          Instances For
            def LinOrd.Hom.Simps.hom (X Y : LinOrd) (f : X.Hom Y) :
            ↑X β†’o ↑Y

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
              Instances For

                The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                theorem LinOrd.ext {X Y : LinOrd} {f g : X ⟢ Y} (w : βˆ€ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                f = g
                theorem LinOrd.coe_of (X : Type u) [LinearOrder X] :
                ↑{ carrier := X, str := inst✝ } = X
                theorem LinOrd.hom_ext {X Y : LinOrd} {f g : X ⟢ Y} (hf : Hom.hom f = Hom.hom g) :
                f = g
                @[simp]
                theorem LinOrd.hom_ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X β†’o Y) :
                @[simp]
                theorem LinOrd.ofHom_hom {X Y : LinOrd} (f : X ⟢ Y) :
                @[simp]
                theorem LinOrd.ofHom_id {X : Type u} [LinearOrder X] :
                ofHom OrderHom.id = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
                def LinOrd.Iso.mk {Ξ± Ξ² : LinOrd} (e : ↑α ≃o ↑β) :
                Ξ± β‰… Ξ²

                Constructs an equivalence between linear orders from an order isomorphism between them.

                Equations
                  Instances For
                    @[simp]
                    theorem LinOrd.Iso.mk_inv {Ξ± Ξ² : LinOrd} (e : ↑α ≃o ↑β) :
                    (mk e).inv = ofHom ↑e.symm
                    @[simp]
                    theorem LinOrd.Iso.mk_hom {Ξ± Ξ² : LinOrd} (e : ↑α ≃o ↑β) :
                    (mk e).hom = ofHom ↑e
                    @[simp]
                    theorem LinOrd.dual_map {X✝ Y✝ : LinOrd} (f : X✝ ⟢ Y✝) :

                    The equivalence between LinOrd and itself induced by OrderDual both ways.

                    Equations
                      Instances For