Documentation Verification Report

PartOrdEmb

πŸ“ Source: Mathlib/Order/Category/PartOrdEmb.lean

Statistics

MetricCount
DefinitionsPartOrdEmb, hom, hom, hom', mk, CoconePt, desc, cocone, instPartialOrderCoconePt, isColimitCocone, carrier, dual, dualEquiv, hasForgetToPartOrd, instCategory, instCoeSortType, instConcreteCategoryOrderEmbeddingCarrier, ofHom, str
19
Theoremsext, ext_iff, injective, le_iff_le, mk_hom, mk_inv, fac_apply, cocone_pt_coe, cocone_ΞΉ_app, instHasColimit, instHasColimitsOfShape, instHasFilteredColimitsOfSize, instPreservesColimitForgetOrderEmbeddingCarrier, instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, partOrdEmb_dual_comp_forget_to_pardOrd
38
Total57

PartOrdEmb

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
25 mathmath: Limits.cocone_pt_coe, ofHom_hom, comp_apply, hom_inv_apply, hom_comp, Limits.CoconePt.fac_apply, ofHom_apply, Limits.cocone_ΞΉ_app, dual_map, hom_id, partOrdEmb_dual_comp_forget_to_pardOrd, coe_comp, inv_hom_apply, id_apply, forget_map, coe_of, Limits.instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, Hom.injective, Hom.le_iff_le, Iso.mk_hom, Limits.instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, ext_iff, Limits.instPreservesColimitForgetOrderEmbeddingCarrier, coe_id, Iso.mk_inv
dual πŸ“–CompOp
4 mathmath: dual_map, partOrdEmb_dual_comp_forget_to_pardOrd, dualEquiv_inverse, dualEquiv_functor
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_inverse, dualEquiv_functor
hasForgetToPartOrd πŸ“–CompOp
1 mathmath: partOrdEmb_dual_comp_forget_to_pardOrd
instCategory πŸ“–CompOp
30 mathmath: Limits.cocone_pt_coe, comp_apply, hom_inv_apply, hom_comp, Limits.CoconePt.fac_apply, ofHom_apply, Limits.cocone_ΞΉ_app, Limits.instHasColimit, dual_map, hom_id, ofHom_id, partOrdEmb_dual_comp_forget_to_pardOrd, dualEquiv_inverse, coe_comp, inv_hom_apply, id_apply, forget_map, Limits.instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, Hom.injective, ofHom_comp, Hom.le_iff_le, Limits.instHasColimitsOfShape, Iso.mk_hom, dualEquiv_functor, Limits.instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, ext_iff, Limits.instPreservesColimitForgetOrderEmbeddingCarrier, Limits.instHasFilteredColimitsOfSize, coe_id, Iso.mk_inv
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryOrderEmbeddingCarrier πŸ“–CompOp
17 mathmath: comp_apply, hom_inv_apply, Limits.CoconePt.fac_apply, ofHom_apply, Limits.cocone_ΞΉ_app, partOrdEmb_dual_comp_forget_to_pardOrd, coe_comp, inv_hom_apply, id_apply, forget_map, Limits.instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, Hom.injective, Hom.le_iff_le, Limits.instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, ext_iff, Limits.instPreservesColimitForgetOrderEmbeddingCarrier, coe_id
ofHom πŸ“–CompOp
9 mathmath: ofHom_hom, ofHom_apply, Limits.cocone_ΞΉ_app, dual_map, ofHom_id, hom_ofHom, ofHom_comp, Iso.mk_hom, Iso.mk_inv
str πŸ“–CompOp
23 mathmath: ofHom_hom, comp_apply, hom_inv_apply, hom_comp, Limits.CoconePt.fac_apply, ofHom_apply, Limits.cocone_ΞΉ_app, dual_map, hom_id, partOrdEmb_dual_comp_forget_to_pardOrd, coe_comp, inv_hom_apply, id_apply, forget_map, Limits.instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, Hom.injective, Hom.le_iff_le, Iso.mk_hom, Limits.instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, ext_iff, Limits.instPreservesColimitForgetOrderEmbeddingCarrier, coe_id, Iso.mk_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
PartOrdEmb
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
PartOrdEmb
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
PartOrdEmb
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instPartialOrder
str
OrderEmbedding.dual
PartialOrder.toPreorder
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
PartOrdEmb
instCategory
CategoryTheory.types
CategoryTheory.forget
OrderEmbedding
carrier
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
PartOrdEmb
CategoryTheory.Category.toCategoryStruct
instCategory
RelEmbedding.trans
carrier
Preorder.toLE
PartialOrder.toPreorder
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
PartOrdEmb
CategoryTheory.Category.toCategoryStruct
instCategory
RelEmbedding.refl
carrier
Preorder.toLE
PartialOrder.toPreorder
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.id_apply
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
str
instFunLikeOrderEmbedding
instConcreteCategoryOrderEmbeddingCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
RelEmbedding.trans
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.comp
PartOrdEmb
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
RelEmbedding.refl
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.CategoryStruct.id
PartOrdEmb
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

PartOrdEmb.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: PartOrdEmb.ofHom_hom, PartOrdEmb.hom_comp, PartOrdEmb.dual_map, PartOrdEmb.hom_id, PartOrdEmb.hom_ext_iff, PartOrdEmb.hom_ofHom
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext
injective πŸ“–mathematicalβ€”PartOrdEmb.carrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
PartOrdEmb.instCategory
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
β€”RelEmbedding.injective
le_iff_le πŸ“–mathematicalβ€”PartOrdEmb.carrier
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
PartOrdEmb
PartOrdEmb.instCategory
OrderEmbedding
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
β€”OrderEmbedding.le_iff_le

PartOrdEmb.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

PartOrdEmb.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
PartOrdEmb
PartOrdEmb.instCategory
PartOrdEmb.ofHom
PartOrdEmb.carrier
PartOrdEmb.str
RelIso.toRelEmbedding
Preorder.toLE
PartialOrder.toPreorder
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
PartOrdEmb
PartOrdEmb.instCategory
PartOrdEmb.ofHom
PartOrdEmb.carrier
PartOrdEmb.str
RelIso.toRelEmbedding
Preorder.toLE
PartialOrder.toPreorder
OrderIso.symm
β€”β€”

PartOrdEmb.Limits

Definitions

NameCategoryTheorems
CoconePt πŸ“–CompOp
3 mathmath: cocone_pt_coe, CoconePt.fac_apply, cocone_ΞΉ_app
cocone πŸ“–CompOp
2 mathmath: cocone_pt_coe, cocone_ΞΉ_app
instPartialOrderCoconePt πŸ“–CompOp
2 mathmath: CoconePt.fac_apply, cocone_ΞΉ_app
isColimitCocone πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_pt_coe πŸ“–mathematicalβ€”PartOrdEmb.carrier
CategoryTheory.Limits.Cocone.pt
PartOrdEmb
PartOrdEmb.instCategory
cocone
CoconePt
β€”β€”
cocone_ΞΉ_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
PartOrdEmb
PartOrdEmb.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
PartOrdEmb.of
CoconePt
instPartialOrderCoconePt
CategoryTheory.Limits.Cocone.ΞΉ
cocone
PartOrdEmb.ofHom
PartOrdEmb.carrier
PartOrdEmb.str
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.forget
OrderEmbedding
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.Limits.Cocone.pt
β€”β€”
instHasColimit πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimit
PartOrdEmb
PartOrdEmb.instCategory
β€”CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
instHasColimitsOfShape πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimitsOfShape
PartOrdEmb
PartOrdEmb.instCategory
β€”instHasColimit
instHasFilteredColimitsOfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFilteredColimitsOfSize
PartOrdEmb
PartOrdEmb.instCategory
β€”instHasColimitsOfShape
instPreservesColimitForgetOrderEmbeddingCarrier πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
PartOrdEmb
PartOrdEmb.instCategory
CategoryTheory.types
CategoryTheory.forget
OrderEmbedding
PartOrdEmb.carrier
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
β€”CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
PartOrdEmb
PartOrdEmb.instCategory
CategoryTheory.types
CategoryTheory.forget
OrderEmbedding
PartOrdEmb.carrier
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
β€”instPreservesColimitForgetOrderEmbeddingCarrier
instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFilteredColimitsOfSize
PartOrdEmb
PartOrdEmb.instCategory
CategoryTheory.types
CategoryTheory.forget
OrderEmbedding
PartOrdEmb.carrier
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
β€”instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier

PartOrdEmb.Limits.CoconePt

Definitions

NameCategoryTheorems
desc πŸ“–CompOp
1 mathmath: fac_apply

Theorems

NameKindAssumesProvesValidatesDepends On
fac_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
PartOrdEmb.Limits.CoconePt
PartOrdEmb.carrier
CategoryTheory.Limits.Cocone.pt
PartOrdEmb
PartOrdEmb.instCategory
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.Limits.instPartialOrderCoconePt
PartOrdEmb.str
instFunLikeOrderEmbedding
desc
CategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.forget
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.ConcreteCategory.hom
β€”CategoryTheory.Limits.IsColimit.fac

(root)

Definitions

NameCategoryTheorems
PartOrdEmb πŸ“–CompData
30 mathmath: PartOrdEmb.Limits.cocone_pt_coe, PartOrdEmb.comp_apply, PartOrdEmb.hom_inv_apply, PartOrdEmb.hom_comp, PartOrdEmb.Limits.CoconePt.fac_apply, PartOrdEmb.ofHom_apply, PartOrdEmb.Limits.cocone_ΞΉ_app, PartOrdEmb.Limits.instHasColimit, PartOrdEmb.dual_map, PartOrdEmb.hom_id, PartOrdEmb.ofHom_id, partOrdEmb_dual_comp_forget_to_pardOrd, PartOrdEmb.dualEquiv_inverse, PartOrdEmb.coe_comp, PartOrdEmb.inv_hom_apply, PartOrdEmb.id_apply, PartOrdEmb.forget_map, PartOrdEmb.Limits.instPreservesColimitsOfShapeForgetOrderEmbeddingCarrier, PartOrdEmb.Hom.injective, PartOrdEmb.ofHom_comp, PartOrdEmb.Hom.le_iff_le, PartOrdEmb.Limits.instHasColimitsOfShape, PartOrdEmb.Iso.mk_hom, PartOrdEmb.dualEquiv_functor, PartOrdEmb.Limits.instPreservesFilteredColimitsOfSizeForgetOrderEmbeddingCarrier, PartOrdEmb.ext_iff, PartOrdEmb.Limits.instPreservesColimitForgetOrderEmbeddingCarrier, PartOrdEmb.Limits.instHasFilteredColimitsOfSize, PartOrdEmb.coe_id, PartOrdEmb.Iso.mk_inv

Theorems

NameKindAssumesProvesValidatesDepends On
partOrdEmb_dual_comp_forget_to_pardOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
PartOrdEmb
PartOrdEmb.instCategory
PartOrd
PartOrd.instCategory
PartOrdEmb.dual
CategoryTheory.forgetβ‚‚
OrderEmbedding
PartOrdEmb.carrier
Preorder.toLE
PartialOrder.toPreorder
PartOrdEmb.str
instFunLikeOrderEmbedding
PartOrdEmb.instConcreteCategoryOrderEmbeddingCarrier
OrderHom
PartOrd.carrier
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
PartOrdEmb.hasForgetToPartOrd
PartOrd.dual
β€”β€”

---

← Back to Index