Documentation

Mathlib.Order.Category.PartOrdEmb

Category of partial orders, with order embeddings as morphisms #

This defines PartOrdEmb, the category of partial orders with order embeddings as morphisms. We also show that PartOrdEmb has filtered colimits.

structure PartOrdEmb :
Type (u_1 + 1)

The category of partial orders.

  • of :: (
    • carrier : Type u_1

      The underlying partially ordered type.

    • str : PartialOrder โ†‘self
  • )
Instances For
    structure PartOrdEmb.Hom (X Y : PartOrdEmb) :

    The type of morphisms in PartOrdEmb R.

    Instances For
      theorem PartOrdEmb.Hom.ext {X Y : PartOrdEmb} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      @[reducible, inline]
      abbrev PartOrdEmb.Hom.hom {X Y : PartOrdEmb} (f : X.Hom Y) :
      โ†‘X โ†ชo โ†‘Y

      Turn a morphism in PartOrdEmb back into a OrderEmbedding.

      Equations
        Instances For
          @[reducible, inline]
          abbrev PartOrdEmb.ofHom {X Y : Type u} [PartialOrder X] [PartialOrder Y] (f : X โ†ชo Y) :
          { carrier := X, str := instโœ } โŸถ { carrier := Y, str := instโœยน }

          Typecheck a OrderEmbedding as a morphism in PartOrdEmb.

          Equations
            Instances For
              def PartOrdEmb.Hom.Simps.hom (X Y : PartOrdEmb) (f : X.Hom Y) :
              โ†‘X โ†ชo โ†‘Y

              Use the ConcreteCategory.hom projection for @[simps] lemmas.

              Equations
                Instances For

                  The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                  theorem PartOrdEmb.ext {X Y : PartOrdEmb} {f g : X โŸถ Y} (w : โˆ€ (x : โ†‘X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                  f = g
                  theorem PartOrdEmb.coe_of (X : Type u) [PartialOrder X] :
                  โ†‘{ carrier := X, str := instโœ } = X
                  theorem PartOrdEmb.Hom.le_iff_le {X Y : PartOrdEmb} (f : X โŸถ Y) (xโ‚ xโ‚‚ : โ†‘X) :
                  theorem PartOrdEmb.hom_ext {X Y : PartOrdEmb} {f g : X โŸถ Y} (hf : Hom.hom f = Hom.hom g) :
                  f = g
                  @[simp]
                  theorem PartOrdEmb.ofHom_id {X : Type u} [PartialOrder X] :
                  ofHom (RelEmbedding.refl fun (x1 x2 : X) => x1 โ‰ค x2) = CategoryTheory.CategoryStruct.id { carrier := X, str := instโœ }
                  def PartOrdEmb.Iso.mk {ฮฑ ฮฒ : PartOrdEmb} (e : โ†‘ฮฑ โ‰ƒo โ†‘ฮฒ) :
                  ฮฑ โ‰… ฮฒ

                  Constructs an equivalence between partial orders from an order isomorphism between them.

                  Equations
                    Instances For
                      @[simp]
                      theorem PartOrdEmb.Iso.mk_hom {ฮฑ ฮฒ : PartOrdEmb} (e : โ†‘ฮฑ โ‰ƒo โ†‘ฮฒ) :
                      @[simp]
                      theorem PartOrdEmb.Iso.mk_inv {ฮฑ ฮฒ : PartOrdEmb} (e : โ†‘ฮฑ โ‰ƒo โ†‘ฮฒ) :
                      @[simp]
                      theorem PartOrdEmb.dual_map {Xโœ Yโœ : PartOrdEmb} (f : Xโœ โŸถ Yโœ) :

                      The equivalence between PartOrdEmb and itself induced by OrderDual both ways.

                      Equations
                        Instances For

                          Given a functor F : J โฅค PartOrdEmb and a colimit cocone c for F โ‹™ forget _, this is the type c.pt on which we define a partial order which makes it the colimit of F.

                          Equations
                            Instances For

                              The colimit cocone for a functor F : J โฅค PartOrdEmb from a filtered category that is constructed from a colimit cocone for F โ‹™ forget _.

                              Equations
                                Instances For

                                  A colimit cocone for F : J โฅค PartOrdEmb (with J filtered) can be obtained from a colimit cocone for F โ‹™ forget _.

                                  Equations
                                    Instances For