Documentation Verification Report

Semilat

πŸ“ Source: Mathlib/Order/Category/Semilat.lean

Statistics

MetricCount
DefinitionsSemilatInfCat, mk, X, dual, hasForgetToPartOrd, instCoeSortType, instConcreteCategoryInfTopHomX, instInhabited, instLargeCategory, isOrderTop, isSemilatticeInf, SemilatSupCat, mk, X, dual, hasForgetToPartOrd, instCoeSortType, instConcreteCategorySupBotHomX, instInhabited, instLargeCategory, isOrderBot, isSemilatticeSup, SemilatSupCatEquivSemilatInfCat
23
Theoremsmk_hom_toFun, mk_inv_toFun, coe_forget_to_partOrd, coe_of, dual_map, dual_obj_X, dual_obj_isOrderBot, dual_obj_isSemilatticeSup, SemilatInfCat_dual_comp_forget_to_partOrd, mk_hom_toFun, mk_inv_toFun, coe_forget_to_partOrd, coe_of, dual_map, SemilatSupCatEquivSemilatInfCat_functor, SemilatSupCatEquivSemilatInfCat_inverse, SemilatSupCat_dual_comp_forget_to_partOrd
17
Total40

SemilatInfCat

Definitions

NameCategoryTheorems
X πŸ“–CompOp
14 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, dual_obj_isOrderBot, dual_obj_X, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, coe_of, Iso.mk_inv_toFun, dual_map, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd, dual_obj_isSemilatticeSup
dual πŸ“–CompOp
7 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, dual_obj_isOrderBot, dual_obj_X, bddLat_dual_comp_forget_to_semilatSupCat, SemilatSupCatEquivSemilatInfCat_inverse, dual_map, dual_obj_isSemilatticeSup
hasForgetToPartOrd πŸ“–CompOp
4 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_partOrd, SemilatSupCat_dual_comp_forget_to_partOrd
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryInfTopHomX πŸ“–CompOp
7 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd
instInhabited πŸ“–CompOpβ€”
instLargeCategory πŸ“–CompOp
16 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, dual_obj_isOrderBot, dual_obj_X, SemilatSupCatEquivSemilatInfCat_functor, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, SemilatSupCat.dual_map, coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, SemilatSupCatEquivSemilatInfCat_inverse, Iso.mk_inv_toFun, dual_map, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd, dual_obj_isSemilatticeSup
isOrderTop πŸ“–CompOp
11 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, dual_obj_isOrderBot, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, Iso.mk_inv_toFun, dual_map, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd
isSemilatticeInf πŸ“–CompOp
12 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, dual_obj_isOrderBot, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, Iso.mk_inv_toFun, dual_map, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd, dual_obj_isSemilatticeSup

Theorems

NameKindAssumesProvesValidatesDepends On
coe_forget_to_partOrd πŸ“–mathematicalβ€”PartOrd.carrier
CategoryTheory.Functor.obj
SemilatInfCat
instLargeCategory
PartOrd
PartOrd.instCategory
CategoryTheory.forgetβ‚‚
InfTopHom
X
SemilatticeInf.toMin
isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
isOrderTop
InfTopHom.instFunLike
instConcreteCategoryInfTopHomX
OrderHom
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
hasForgetToPartOrd
β€”β€”
coe_of πŸ“–mathematicalβ€”X
of
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SemilatInfCat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
dual
DFunLike.coe
Equiv
InfTopHom
X
SemilatticeInf.toMin
isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
isOrderTop
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
EquivLike.toFunLike
Equiv.instEquivLike
InfTopHom.dual
β€”β€”
dual_obj_X πŸ“–mathematicalβ€”SemilatSupCat.X
CategoryTheory.Functor.obj
SemilatInfCat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
dual
OrderDual
X
β€”β€”
dual_obj_isOrderBot πŸ“–mathematicalβ€”SemilatSupCat.isOrderBot
CategoryTheory.Functor.obj
SemilatInfCat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
dual
OrderDual.instOrderBot
X
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
isSemilatticeInf
isOrderTop
β€”β€”
dual_obj_isSemilatticeSup πŸ“–mathematicalβ€”SemilatSupCat.isSemilatticeSup
CategoryTheory.Functor.obj
SemilatInfCat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
dual
OrderDual.instSemilatticeSup
X
isSemilatticeInf
β€”β€”

SemilatInfCat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom_toFun πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
CategoryTheory.Iso.hom
SemilatInfCat
SemilatInfCat.instLargeCategory
OrderIso
instFunLikeOrderIso
β€”β€”
mk_inv_toFun πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
CategoryTheory.Iso.inv
SemilatInfCat
SemilatInfCat.instLargeCategory
OrderIso
instFunLikeOrderIso
OrderIso.symm
β€”β€”

SemilatSupCat

Definitions

NameCategoryTheorems
X πŸ“–CompOp
12 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, Iso.mk_inv_toFun, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, SemilatInfCat.dual_obj_X, dual_map, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatSup, coe_of, SemilatSupCat_dual_comp_forget_to_partOrd, coe_forget_to_partOrd
dual πŸ“–CompOp
4 mathmath: SemilatSupCatEquivSemilatInfCat_functor, dual_map, bddLat_dual_comp_forget_to_semilatInfCat, SemilatSupCat_dual_comp_forget_to_partOrd
hasForgetToPartOrd πŸ“–CompOp
4 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, SemilatSupCat_dual_comp_forget_to_partOrd, coe_forget_to_partOrd
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategorySupBotHomX πŸ“–CompOp
7 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, BddLat.coe_forget_to_semilatSup, SemilatSupCat_dual_comp_forget_to_partOrd, coe_forget_to_partOrd
instInhabited πŸ“–CompOpβ€”
instLargeCategory πŸ“–CompOp
16 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, Iso.mk_inv_toFun, SemilatInfCat.dual_obj_isOrderBot, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, SemilatInfCat.dual_obj_X, SemilatSupCatEquivSemilatInfCat_functor, dual_map, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, SemilatSupCatEquivSemilatInfCat_inverse, Iso.mk_hom_toFun, SemilatInfCat.dual_map, BddLat.coe_forget_to_semilatSup, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatInfCat.dual_obj_isSemilatticeSup, coe_forget_to_partOrd
isOrderBot πŸ“–CompOp
11 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, Iso.mk_inv_toFun, SemilatInfCat.dual_obj_isOrderBot, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, dual_map, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatSup, SemilatSupCat_dual_comp_forget_to_partOrd, coe_forget_to_partOrd
isSemilatticeSup πŸ“–CompOp
11 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, Iso.mk_inv_toFun, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, dual_map, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatSup, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatInfCat.dual_obj_isSemilatticeSup, coe_forget_to_partOrd

Theorems

NameKindAssumesProvesValidatesDepends On
coe_forget_to_partOrd πŸ“–mathematicalβ€”PartOrd.carrier
CategoryTheory.Functor.obj
SemilatSupCat
instLargeCategory
PartOrd
PartOrd.instCategory
CategoryTheory.forgetβ‚‚
SupBotHom
X
SemilatticeSup.toMax
isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
isOrderBot
SupBotHom.instFunLike
instConcreteCategorySupBotHomX
OrderHom
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
hasForgetToPartOrd
β€”β€”
coe_of πŸ“–mathematicalβ€”X
of
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SemilatSupCat
instLargeCategory
SemilatInfCat
SemilatInfCat.instLargeCategory
dual
DFunLike.coe
Equiv
SupBotHom
X
SemilatticeSup.toMax
isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
isOrderBot
InfTopHom
OrderDual
OrderDual.instInf
OrderDual.instTop
EquivLike.toFunLike
Equiv.instEquivLike
SupBotHom.dual
β€”β€”

SemilatSupCat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom_toFun πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
CategoryTheory.Iso.hom
SemilatSupCat
SemilatSupCat.instLargeCategory
OrderIso
instFunLikeOrderIso
β€”β€”
mk_inv_toFun πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
CategoryTheory.Iso.inv
SemilatSupCat
SemilatSupCat.instLargeCategory
OrderIso
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
SemilatInfCat πŸ“–CompData
16 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, SemilatInfCat.dual_obj_isOrderBot, SemilatInfCat.dual_obj_X, SemilatSupCatEquivSemilatInfCat_functor, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, SemilatSupCat.dual_map, SemilatInfCat.coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, SemilatSupCatEquivSemilatInfCat_inverse, SemilatInfCat.Iso.mk_inv_toFun, SemilatInfCat.dual_map, SemilatInfCat.Iso.mk_hom_toFun, BddLat.coe_forget_to_semilatInf, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatInfCat.dual_obj_isSemilatticeSup
SemilatSupCat πŸ“–CompData
16 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, SemilatSupCat.Iso.mk_inv_toFun, SemilatInfCat.dual_obj_isOrderBot, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, SemilatInfCat.dual_obj_X, SemilatSupCatEquivSemilatInfCat_functor, SemilatSupCat.dual_map, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, SemilatSupCatEquivSemilatInfCat_inverse, SemilatSupCat.Iso.mk_hom_toFun, SemilatInfCat.dual_map, BddLat.coe_forget_to_semilatSup, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatInfCat.dual_obj_isSemilatticeSup, SemilatSupCat.coe_forget_to_partOrd
SemilatSupCatEquivSemilatInfCat πŸ“–CompOp
2 mathmath: SemilatSupCatEquivSemilatInfCat_functor, SemilatSupCatEquivSemilatInfCat_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
SemilatInfCat_dual_comp_forget_to_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SemilatInfCat
SemilatInfCat.instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
PartOrd
PartOrd.instCategory
SemilatInfCat.dual
CategoryTheory.forgetβ‚‚
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
OrderHom
PartOrd.carrier
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
SemilatSupCat.hasForgetToPartOrd
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
SemilatInfCat.hasForgetToPartOrd
PartOrd.dual
β€”β€”
SemilatSupCatEquivSemilatInfCat_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
SemilatSupCat
SemilatInfCat
SemilatSupCat.instLargeCategory
SemilatInfCat.instLargeCategory
SemilatSupCatEquivSemilatInfCat
SemilatSupCat.dual
β€”β€”
SemilatSupCatEquivSemilatInfCat_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
SemilatSupCat
SemilatInfCat
SemilatSupCat.instLargeCategory
SemilatInfCat.instLargeCategory
SemilatSupCatEquivSemilatInfCat
SemilatInfCat.dual
β€”β€”
SemilatSupCat_dual_comp_forget_to_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SemilatSupCat
SemilatSupCat.instLargeCategory
SemilatInfCat
SemilatInfCat.instLargeCategory
PartOrd
PartOrd.instCategory
SemilatSupCat.dual
CategoryTheory.forgetβ‚‚
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
OrderHom
PartOrd.carrier
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
SemilatInfCat.hasForgetToPartOrd
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
SemilatSupCat.hasForgetToPartOrd
PartOrd.dual
β€”β€”

---

← Back to Index