Documentation

Mathlib.Order.Category.Semilat

The categories of semilattices #

This defines SemilatSupCat and SemilatInfCat, the categories of sup-semilattices with a bottom element and inf-semilattices with a top element.

References #

structure SemilatSupCat :
Type (u + 1)

The category of sup-semilattices with a bottom element.

  • of :: (
    • X : Type u

      The underlying type of a sup-semilattice with a bottom element.

    • isSemilatticeSup : SemilatticeSup self.X
    • isOrderBot : OrderBot self.X
  • )
Instances For
    structure SemilatInfCat :
    Type (u + 1)

    The category of inf-semilattices with a top element.

    • of :: (
    • )
    Instances For
      theorem SemilatSupCat.coe_of (α : Type u_1) [SemilatticeSup α] [OrderBot α] :
      { X := α, isSemilatticeSup := inst✝, isOrderBot := inst✝¹ }.X = α
      theorem SemilatInfCat.coe_of (α : Type u_1) [SemilatticeInf α] [OrderTop α] :
      { X := α, isSemilatticeInf := inst✝, isOrderTop := inst✝¹ }.X = α

      Order dual #

      def SemilatSupCat.Iso.mk {α β : SemilatSupCat} (e : α.X ≃o β.X) :
      α β

      Constructs an isomorphism of lattices from an order isomorphism between them.

      Equations
        Instances For
          @[simp]
          theorem SemilatSupCat.Iso.mk_inv_toFun {α β : SemilatSupCat} (e : α.X ≃o β.X) (a : β.X) :
          (mk e).inv a = e.symm a
          @[simp]
          theorem SemilatSupCat.Iso.mk_hom_toFun {α β : SemilatSupCat} (e : α.X ≃o β.X) (a : α.X) :
          (mk e).hom a = e a
          @[simp]
          theorem SemilatSupCat.dual_map {x✝ x✝¹ : SemilatSupCat} (a : SupBotHom x✝.X x✝¹.X) :
          def SemilatInfCat.Iso.mk {α β : SemilatInfCat} (e : α.X ≃o β.X) :
          α β

          Constructs an isomorphism of lattices from an order isomorphism between them.

          Equations
            Instances For
              @[simp]
              theorem SemilatInfCat.Iso.mk_hom_toFun {α β : SemilatInfCat} (e : α.X ≃o β.X) (a : α.X) :
              (mk e).hom a = e a
              @[simp]
              theorem SemilatInfCat.Iso.mk_inv_toFun {α β : SemilatInfCat} (e : α.X ≃o β.X) (a : β.X) :
              (mk e).inv a = e.symm a
              @[simp]
              theorem SemilatInfCat.dual_map {x✝ x✝¹ : SemilatInfCat} (a : InfTopHom x✝.X x✝¹.X) :

              The equivalence between SemilatSupCat and SemilatInfCat induced by OrderDual both ways.

              Equations
                Instances For