| Name | Category | Theorems |
comap 📖 | CompOp | 2 mathmath: comap_carrier, mem_comap
|
copy 📖 | CompOp | 2 mathmath: copy_eq, coe_copy
|
instBot 📖 | CompOp | 3 mathmath: coe_bot, Descriptive.Tree.tree_eq_bot, notMem_bot
|
instCompleteLattice 📖 | CompOp | 7 mathmath: isComplemented_iff, mem_subtype, codisjoint_iff, isCompl_iff, subtype_injective, coe_subtype, disjoint_iff
|
instInfSet 📖 | CompOp | 5 mathmath: coe_iInf, coe_sInf', mem_sInf, mem_iInf, coe_sInf
|
instMaxSubtypeMem 📖 | CompOp | 1 mathmath: mem_sup
|
instMinSubtypeMem 📖 | CompOp | 1 mathmath: mem_inf
|
instPartialOrder 📖 | CompOp | — |
instSetLike 📖 | CompOp | 48 mathmath: CompleteLatticeHom.range_coe, Descriptive.Tree.take_mem, isComplemented_iff, top_mem, Descriptive.Tree.mem_pullSub_long, OrderIso.setIsotypicComponents_apply, coe_iInf, coe_sInf', mem_subtype, bot_mem, Descriptive.Tree.take_coe, Descriptive.Tree.pullSub_adjunction, mem_map, mem_sInf, codisjoint_iff, Descriptive.coe_def, Descriptive.Tree.pullSub_subAt, isCompl_iff, Descriptive.Tree.take_eq_take, mem_sup, coe_sSup', subtype_injective, coe_bot, mem_fullyInvariantSubmodule_iff, mem_inf, coe_iSup, Descriptive.Tree.tree_eq_bot, coe_sSup, mem_iSup, coe_top, mem_top, Descriptive.Tree.mem_subAt, coe_subtype, comap_carrier, mem_sSup, mem_comap, ext_iff, CompleteLatticeHom.toOrderIsoRangeOfInjective_apply, disjoint_iff, mem_iInf, OrderIso.setIsotypicComponents_symm_apply, Descriptive.Tree.mem_pullSub_self, map_carrier, Descriptive.Tree.mem_pullSub_short, Descriptive.Tree.drop_coe, notMem_bot, Descriptive.Tree.mem_pullSub_append, coe_sInf
|
instSupSet 📖 | CompOp | 6 mathmath: OrderIso.setIsotypicComponents_apply, coe_sSup', coe_iSup, coe_sSup, mem_iSup, mem_sSup
|
instTop 📖 | CompOp | 2 mathmath: coe_top, mem_top
|
instTop_1 📖 | CompOp | — |
map 📖 | CompOp | 2 mathmath: mem_map, map_carrier
|
mk' 📖 | CompOp | 1 mathmath: mk'_carrier
|
subtype 📖 | CompOp | 3 mathmath: mem_subtype, subtype_injective, coe_subtype
|
toSublattice 📖 | CompOp | 3 mathmath: mk'_carrier, comap_carrier, map_carrier
|