Documentation

Mathlib.Order.CompleteSublattice

Complete Sublattices #

This file defines complete sublattices. These are subsets of complete lattices which are closed under arbitrary suprema and infima. As a standard example one could take the complete sublattice of invariant submodules of some module with respect to a linear map.

Main definitions: #

structure CompleteSublattice (α : Type u_1) [CompleteLattice α] extends Sublattice α :
Type u_1

A complete sublattice is a subset of a complete lattice that is closed under arbitrary suprema and infima.

Instances For
    def CompleteSublattice.mk' {α : Type u_1} [CompleteLattice α] (carrier : Set α) (sSupClosed' : ∀ ⦃s : Set α⦄, s carriersSup s carrier) (sInfClosed' : ∀ ⦃s : Set α⦄, s carriersInf s carrier) :

    To check that a subset is a complete sublattice, one does not need to check that it is closed under binary Sup since this follows from the stronger sSup condition. Likewise for infima.

    Equations
      Instances For
        @[simp]
        theorem CompleteSublattice.mk'_carrier {α : Type u_1} [CompleteLattice α] (carrier : Set α) (sSupClosed' : ∀ ⦃s : Set α⦄, s carriersSup s carrier) (sInfClosed' : ∀ ⦃s : Set α⦄, s carriersInf s carrier) :
        (mk' carrier sSupClosed' sInfClosed').carrier = carrier
        theorem CompleteSublattice.sSupClosed {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {s : Set α} (h : s L) :
        sSup s L
        theorem CompleteSublattice.sInfClosed {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {s : Set α} (h : s L) :
        sInf s L
        @[simp]
        theorem CompleteSublattice.coe_sSup {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
        (sSup S) = sSup {x : α | sS, s = x}
        theorem CompleteSublattice.coe_sSup' {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
        (sSup S) = NS, N
        @[simp]
        theorem CompleteSublattice.coe_sInf {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
        (sInf S) = sInf {x : α | sS, s = x}
        theorem CompleteSublattice.coe_sInf' {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
        (sInf S) = NS, N
        @[simp]
        theorem CompleteSublattice.coe_iSup {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {ι : Sort u_3} (f : ιL) :
        (iSup f) = ⨆ (i : ι), (f i)
        @[simp]
        theorem CompleteSublattice.coe_iInf {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {ι : Sort u_3} (f : ιL) :
        (iInf f) = ⨅ (i : ι), (f i)

        The natural complete lattice hom from a complete sublattice to the original lattice.

        Equations
          Instances For
            theorem CompleteSublattice.subtype_apply {α : Type u_1} [CompleteLattice α] (L : Sublattice α) (a : L) :
            L.subtype a = a

            The push forward of a complete sublattice under a complete lattice hom is a complete sublattice.

            Equations
              Instances For
                @[simp]
                theorem CompleteSublattice.map_carrier {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (L : CompleteSublattice α) :
                (map f L).carrier = f '' L
                @[simp]
                theorem CompleteSublattice.mem_map {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) {L : CompleteSublattice α} {b : β} :
                b map f L aL, f a = b

                The pull back of a complete sublattice under a complete lattice hom is a complete sublattice.

                Equations
                  Instances For
                    @[simp]
                    theorem CompleteSublattice.comap_carrier {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (L : CompleteSublattice β) :
                    (comap f L).carrier = f ⁻¹' L
                    @[simp]
                    theorem CompleteSublattice.mem_comap {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) {L : CompleteSublattice β} {a : α} :
                    a comap f L f a L
                    theorem CompleteSublattice.isCompl_iff {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {a b : L} :
                    IsCompl a b IsCompl a b
                    def CompleteSublattice.copy {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :

                    Copy of a complete sublattice with a new carrier equal to the old one. Useful to fix definitional equalities.

                    Equations
                      Instances For
                        @[simp]
                        theorem CompleteSublattice.coe_copy {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :
                        (L.copy s hs) = s
                        theorem CompleteSublattice.copy_eq {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :
                        L.copy s hs = L

                        The range of a CompleteLatticeHom is a CompleteSublattice.

                        See Note [range copy pattern].

                        Equations
                          Instances For
                            noncomputable def CompleteLatticeHom.toOrderIsoRangeOfInjective {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (hf : Function.Injective f) :
                            α ≃o f.range

                            We can regard a complete lattice homomorphism as an order equivalence to its range.

                            Equations
                              Instances For