Documentation Verification Report

Indexed

📁 Source: Mathlib/Order/ConditionallyCompletePartialOrder/Indexed.lean

Statistics

MetricCount
Definitions0
TheoremsIci_ciSup, Iic_ciInf, ciInf_eq_of_forall_ge_of_forall_gt_exists_lt, ciInf_le_ciSup, ciInf_le_of_le, ciInf_mono, ciSup_eq_of_forall_le_of_forall_lt_exists_gt, ciSup_le_iff, ciSup_mono, isGLB_ciInf, isLUB_ciSup, le_ciInf_iff, le_ciSup_of_le, ciInf_set_le, ciSup_set_le_iff, isGLB_ciInf_set, isLUB_ciSup_set, le_ciInf_set_iff, le_ciSup_set, l_ciSup_of_directed, l_ciSup_set_of_directedOn, l_csSup_of_directedOn, l_csSup_of_directedOn', u_ciInf_of_directed, u_ciInf_set_of_directedOn, u_csInf_of_directedOn, u_csInf_of_directedOn', ciSup_mem_iInter_Icc_of_antitone, map_ciInf_of_directed, map_ciInf_set_of_directedOn, map_ciSup_of_directed, map_ciSup_set_of_directedOn, map_csInf_of_directedOn, map_csInf_of_directedOn', map_csSup_of_directedOn, map_csSup_of_directedOn', cbiInf_eq_of_forall, cbiSup_eq_of_forall, ciInf_Ici, ciInf_const, ciInf_eq_ite, ciInf_neg, ciInf_pos, ciInf_subsingleton, ciInf_unique, ciSup_Iic, ciSup_const, ciSup_eq_ite, ciSup_mem_iInter_Icc_of_antitone_Icc, ciSup_neg, ciSup_pos, ciSup_subsingleton, ciSup_unique
53
Total53

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
Ici_ciSup 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
Set.Ici
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.iInter
Set.ext
ciSup_le_iff
Iic_ciInf 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
Set.Iic
iInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.iInter
Set.ext
Set.mem_Iic
Set.mem_iInter
le_ciInf_iff
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Preorder.toLT
iInf
ConditionallyCompletePartialOrderInf.toInfSet
DirectedOn.csInf_eq_of_forall_ge_of_forall_gt_exists_lt
directedOn_range
Set.range_nonempty
Set.forall_mem_range
Set.exists_range_iff
ciInf_le_ciSup 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
BddBelow
Set.range
BddAbove
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iSup
ConditionallyCompletePartialOrderSup.toSupSet
LE.le.trans
ciInf_le
le_ciSup
ciInf_le_of_le 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ge_trans
ciInf_le
ciInf_mono 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
isEmpty_or_nonempty
iInf_of_isEmpty
le_refl
le_ciInf
ciInf_le_of_le
ciSup_eq_of_forall_le_of_forall_lt_exists_gt 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
DirectedOn.csSup_eq_of_forall_le_of_forall_lt_exists_gt
directedOn_range
Set.range_nonempty
Set.forall_mem_range
Set.exists_range_iff
ciSup_le_iff 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
isLUB_le_iff
isLUB_ciSup
Set.forall_mem_range
ciSup_mono 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
isEmpty_or_nonempty
iSup_of_empty'
le_refl
ciSup_le
le_ciSup_of_le
isGLB_ciInf 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
IsGLB
iInf
ConditionallyCompletePartialOrderInf.toInfSet
DirectedOn.isGLB_csInf
directedOn_range
Set.range_nonempty
isLUB_ciSup 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
IsLUB
iSup
ConditionallyCompletePartialOrderSup.toSupSet
DirectedOn.isLUB_csSup
directedOn_range
Set.range_nonempty
le_ciInf_iff 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
le_isGLB_iff
isGLB_ciInf
Set.forall_mem_range
le_ciSup_of_le 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
le_trans
le_ciSup

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf_set_le 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.image
BddBelow
Set
Set.instMembership
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
LE.le.trans_eq'
csInf_le
Set.mem_image_of_mem
sInf_image'
ciSup_set_le_iff 📖mathematicalSet.Nonempty
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.image
BddAbove
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
isLUB_le_iff
isLUB_ciSup_set
Set.forall_mem_image
isGLB_ciInf_set 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.image
BddBelow
Set.Nonempty
IsGLB
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instMembership
sInf_image'
isGLB_csInf
Set.Nonempty.image
isLUB_ciSup_set 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.image
BddAbove
Set.Nonempty
IsLUB
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
sSup_image'
isLUB_csSup
Set.Nonempty.image
le_ciInf_set_iff 📖mathematicalSet.Nonempty
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.image
BddBelow
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instMembership
le_isGLB_iff
isGLB_ciInf_set
Set.forall_mem_image
le_ciSup_set 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.image
BddAbove
Set
Set.instMembership
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
LE.le.trans_eq
le_csSup
Set.mem_image_of_mem
sSup_image'

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
l_ciSup_of_directed 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Directed
Preorder.toLE
BddAbove
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup.eq_1
l_csSup_of_directedOn
Directed.directedOn_range
Set.range_nonempty
iSup_range'
l_ciSup_set_of_directedOn 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
DirectedOn
Preorder.toLE
Set.image
BddAbove
Set.Nonempty
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
l_ciSup_of_directed
Set.Nonempty.to_subtype
Set.range_comp
Subtype.range_coe_subtype
Set.image_eq_range
l_csSup_of_directedOn 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
DirectedOn
Preorder.toLE
Set.Nonempty
BddAbove
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set.Elem
Set
Set.instMembership
Set.range_comp
Subtype.range_coe_subtype
l_csSup_of_directedOn'
l_csSup_of_directedOn' 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
DirectedOn
Preorder.toLE
Set.Nonempty
BddAbove
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
IsLUB.unique
isLUB_l_image
DirectedOn.isLUB_csSup
DirectedOn.mono_comp
monotone_l
Set.Nonempty.image
Monotone.map_bddAbove
u_ciInf_of_directed 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Directed
Preorder.toLE
BddBelow
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
l_ciSup_of_directed
dual
u_ciInf_set_of_directedOn 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
DirectedOn
Preorder.toLE
Set.image
BddBelow
Set.Nonempty
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instMembership
l_ciSup_set_of_directedOn
dual
u_csInf_of_directedOn 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
DirectedOn
Preorder.toLE
Set.Nonempty
BddBelow
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
iInf
Set.Elem
Set
Set.instMembership
l_csSup_of_directedOn
dual
u_csInf_of_directedOn' 📖mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
DirectedOn
Preorder.toLE
Set.Nonempty
BddBelow
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.image
l_csSup_of_directedOn'
dual

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_mem_iInter_Icc_of_antitone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Antitone
Pi.hasLe
Preorder.toLE
Set
Set.instMembership
Set.iInter
Set.Icc
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.mem_iInter
forall_le_of_antitone
directed_le
Directed.le_ciSup
Set.forall_mem_range
Directed.ciSup_le

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
map_ciInf_of_directed 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
iInf
ConditionallyCompletePartialOrderInf.toInfSet
map_ciSup_of_directed
map_ciInf_set_of_directedOn 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.image
BddBelow
Set.Nonempty
DFunLike.coe
OrderIso
instFunLikeOrderIso
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instMembership
map_ciSup_set_of_directedOn
map_ciSup_of_directed 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
iSup
ConditionallyCompletePartialOrderSup.toSupSet
GaloisConnection.l_ciSup_of_directed
to_galoisConnection
map_ciSup_set_of_directedOn 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.image
BddAbove
Set.Nonempty
DFunLike.coe
OrderIso
instFunLikeOrderIso
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
GaloisConnection.l_ciSup_set_of_directedOn
to_galoisConnection
map_csInf_of_directedOn 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.Nonempty
BddBelow
DFunLike.coe
OrderIso
instFunLikeOrderIso
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
iInf
Set.Elem
Set
Set.instMembership
map_csSup_of_directedOn
map_csInf_of_directedOn' 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.Nonempty
BddBelow
DFunLike.coe
OrderIso
instFunLikeOrderIso
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.image
map_csSup_of_directedOn'
map_csSup_of_directedOn 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.Nonempty
BddAbove
DFunLike.coe
OrderIso
instFunLikeOrderIso
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set.Elem
Set
Set.instMembership
GaloisConnection.l_csSup_of_directedOn
to_galoisConnection
map_csSup_of_directedOn' 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.Nonempty
BddAbove
DFunLike.coe
OrderIso
instFunLikeOrderIso
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
GaloisConnection.l_csSup_of_directedOn'
to_galoisConnection

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cbiInf_eq_of_forall 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
iInf_congr_Prop
ciInf_unique
Set.Subset.antisymm
Set.mem_range
cbiSup_eq_of_forall 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup_congr_Prop
ciSup_unique
Set.Subset.antisymm
ciInf_Ici 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
iInf
Set.Elem
Set.Ici
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instMembership
le_refl
Set.mem_range
Set.mem_Ici
LE.le.antisymm
Directed.ciInf_le
Directed.le_ciInf_iff
Set.nonempty_Ici_subtype
ciInf_const 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
iInf.eq_1
Set.range_const
csInf_singleton
ciInf_eq_ite 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
InfSet.sInf
Set
Set.instEmptyCollection
iInf_congr_Prop
ciInf_unique
ciInf_neg
ciInf_neg 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
InfSet.sInf
Set
Set.instEmptyCollection
iInf.eq_1
Set.range_eq_empty_iff
isEmpty_Prop
ciInf_pos 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
iInf_congr_Prop
ciInf_unique
ciInf_subsingleton 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ciInf_unique
ciInf_unique 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
Unique.instInhabited
Unique.eq_default
ciInf_const
ciSup_Iic 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
iSup
Set.Elem
Set.Iic
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
le_refl
LE.le.antisymm'
Directed.le_ciSup
Directed.ciSup_le_iff
Set.nonempty_Iic_subtype
ciSup_const 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup.eq_1
Set.range_const
csSup_singleton
ciSup_eq_ite 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
SupSet.sSup
Set
Set.instEmptyCollection
iSup_congr_Prop
ciSup_unique
ciSup_neg
ciSup_mem_iInter_Icc_of_antitone_Icc 📖mathematicalAntitone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
Set.Icc
ConditionallyCompletePartialOrderSup.toPartialOrder
Preorder.toLE
Set.instMembership
Set.iInter
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Monotone.ciSup_mem_iInter_Icc_of_antitone
Set.Icc_subset_Icc_iff
ciSup_neg 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
SupSet.sSup
Set
Set.instEmptyCollection
iSup.eq_1
Set.range_eq_empty_iff
isEmpty_Prop
ciSup_pos 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup_congr_Prop
ciSup_unique
ciSup_subsingleton 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ciSup_unique
ciSup_unique 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
Unique.instInhabited
Unique.eq_default
ciSup_const

---

← Back to Index