Documentation Verification Report

PrimeIdeal

πŸ“ Source: Mathlib/Order/PrimeIdeal.lean

Statistics

MetricCount
DefinitionsIsPrime, toPrimePair, PrimePair, F, I, IsPrime, toPrimePair
7
TheoremsisPrime, compl_filter, compl_mem_of_notMem, isMaximal, mem_or_compl_mem, mem_or_mem, of_mem_or_mem, toIsProper, F_isPrime, F_union_I, I_isPrime, I_isProper, I_union_F, compl_F_eq_I, compl_I_eq_F, disjoint, isCompl_I_F, isPrime_iff, isPrime_iff_mem_or_compl_mem, isPrime_iff_mem_or_mem, isPrime_of_mem_or_compl_mem, compl_ideal, isPrime_iff
23
Total30

Order.Ideal

Definitions

NameCategoryTheorems
IsPrime πŸ“–CompData
8 mathmath: isPrime_iff, IsMaximal.isPrime, isPrime_of_mem_or_compl_mem, DistribLattice.prime_ideal_of_disjoint_filter_ideal, isPrime_iff_mem_or_compl_mem, PrimePair.I_isPrime, isPrime_iff_mem_or_mem, IsPrime.of_mem_or_mem
PrimePair πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime_iff πŸ“–mathematicalβ€”IsPrime
IsProper
Preorder.toLE
Order.IsPFilter
Compl.compl
Set
Set.instCompl
SetLike.coe
Order.Ideal
instSetLike
β€”β€”
isPrime_iff_mem_or_compl_mem πŸ“–mathematicalβ€”IsPrime
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Order.Ideal
Preorder.toLE
SetLike.instMembership
instSetLike
Compl.compl
BooleanAlgebra.toCompl
β€”IsPrime.mem_or_compl_mem
isPrime_of_mem_or_compl_mem
isPrime_iff_mem_or_mem πŸ“–mathematicalβ€”IsPrime
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Order.Ideal
Preorder.toLE
SetLike.instMembership
instSetLike
β€”IsPrime.mem_or_mem
IsPrime.of_mem_or_mem
isPrime_of_mem_or_compl_mem πŸ“–mathematicalOrder.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SetLike.instMembership
instSetLike
Compl.compl
BooleanAlgebra.toCompl
IsPrimeβ€”sup_mem
lower
inf_le_right
sup_inf_inf_compl
inf_comm

Order.Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime πŸ“–mathematicalβ€”Order.Ideal.IsPrime
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
β€”Order.Ideal.isPrime_iff_mem_or_mem
toIsProper
Mathlib.Tactic.Contrapose.contrapose₁
SemilatticeInf.instIsCodirectedOrder
maximal_proper
Order.Ideal.lt_sup_principal_of_notMem
Set.eq_univ_iff_forall
Order.Ideal.coe_sup_eq
Order.Ideal.sup_mem
Order.Ideal.lower
le_inf
le_sup_right

Order.Ideal.IsPrime

Definitions

NameCategoryTheorems
toPrimePair πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compl_filter πŸ“–mathematicalβ€”Order.IsPFilter
Compl.compl
Set
Set.instCompl
SetLike.coe
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
β€”β€”
compl_mem_of_notMem πŸ“–mathematicalOrder.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SetLike.instMembership
Order.Ideal.instSetLike
Compl.compl
BooleanAlgebra.toCompl
β€”mem_or_compl_mem
isMaximal πŸ“–mathematicalβ€”Order.Ideal.IsMaximal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
β€”Set.exists_of_ssubset
Order.Ideal.sup_mem
Order.Ideal.lower
inf_le_right
LT.lt.le
compl_mem_of_notMem
sup_inf_inf_compl
mem_or_compl_mem πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SetLike.instMembership
Order.Ideal.instSetLike
Compl.compl
BooleanAlgebra.toCompl
β€”mem_or_mem
inf_compl_eq_bot
Order.Ideal.bot_mem
mem_or_mem πŸ“–β€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
Order.Ideal.instSetLike
SemilatticeInf.toMin
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
compl_filter
Order.PFilter.inf_mem
of_mem_or_mem πŸ“–mathematicalOrder.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
Order.Ideal.instSetLike
Order.Ideal.IsPrimeβ€”Order.Ideal.isPrime_iff
Order.IsPFilter.of_def
Set.nonempty_compl
Order.Ideal.isProper_iff
inf_le_left
inf_le_right
Order.Ideal.mem_compl_of_ge
toIsProper πŸ“–mathematicalβ€”Order.Ideal.IsProper
Preorder.toLE
β€”β€”

Order.Ideal.PrimePair

Definitions

NameCategoryTheorems
F πŸ“–CompOp
7 mathmath: I_union_F, isCompl_I_F, F_isPrime, compl_I_eq_F, F_union_I, disjoint, compl_F_eq_I
I πŸ“–CompOp
8 mathmath: I_union_F, isCompl_I_F, compl_I_eq_F, F_union_I, I_isProper, I_isPrime, disjoint, compl_F_eq_I

Theorems

NameKindAssumesProvesValidatesDepends On
F_isPrime πŸ“–mathematicalβ€”Order.PFilter.IsPrime
F
β€”compl_F_eq_I
Order.Ideal.isIdeal
F_union_I πŸ“–mathematicalβ€”Set
Set.instUnion
SetLike.coe
Order.PFilter
Order.PFilter.instSetLike
F
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
Set.univ
β€”IsCompl.sup_eq_top
IsCompl.symm
isCompl_I_F
I_isPrime πŸ“–mathematicalβ€”Order.Ideal.IsPrime
I
β€”I_isProper
compl_I_eq_F
Order.PFilter.isPFilter
I_isProper πŸ“–mathematicalβ€”Order.Ideal.IsProper
Preorder.toLE
I
β€”Order.PFilter.nonempty
Order.Ideal.isProper_of_notMem
compl_I_eq_F
I_union_F πŸ“–mathematicalβ€”Set
Set.instUnion
SetLike.coe
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
Order.PFilter
Order.PFilter.instSetLike
F
Set.univ
β€”IsCompl.sup_eq_top
isCompl_I_F
compl_F_eq_I πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
SetLike.coe
Order.PFilter
Order.PFilter.instSetLike
F
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
β€”IsCompl.eq_compl
isCompl_I_F
compl_I_eq_F πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
SetLike.coe
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
Order.PFilter
Order.PFilter.instSetLike
F
β€”IsCompl.compl_eq
isCompl_I_F
disjoint πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
Order.PFilter
Order.PFilter.instSetLike
F
β€”IsCompl.disjoint
isCompl_I_F
isCompl_I_F πŸ“–mathematicalβ€”IsCompl
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
SetLike.coe
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
I
Order.PFilter
Order.PFilter.instSetLike
F
β€”β€”

Order.PFilter

Definitions

NameCategoryTheorems
IsPrime πŸ“–CompData
2 mathmath: Order.Ideal.PrimePair.F_isPrime, isPrime_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime_iff πŸ“–mathematicalβ€”IsPrime
Order.IsIdeal
Preorder.toLE
Compl.compl
Set
Set.instCompl
SetLike.coe
Order.PFilter
instSetLike
β€”β€”

Order.PFilter.IsPrime

Definitions

NameCategoryTheorems
toPrimePair πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compl_ideal πŸ“–mathematicalβ€”Order.IsIdeal
Preorder.toLE
Compl.compl
Set
Set.instCompl
SetLike.coe
Order.PFilter
Order.PFilter.instSetLike
β€”β€”

---

← Back to Index