Documentation

Mathlib.Order.PrimeIdeal

Prime ideals #

Main definitions #

Throughout this file, P is at least a preorder, but some sections require more structure, such as a bottom element, a top element, or a join-semilattice structure.

References #

Tags #

ideal, prime

structure Order.Ideal.PrimePair (P : Type u_2) [Preorder P] :
Type u_2

A pair of an Order.Ideal and an Order.PFilter which form a partition of P.

Instances For
    theorem Order.Ideal.PrimePair.compl_I_eq_F {P : Type u_1} [Preorder P] (IF : PrimePair P) :
    (โ†‘IF.I)แถœ = โ†‘IF.F
    theorem Order.Ideal.PrimePair.compl_F_eq_I {P : Type u_1} [Preorder P] (IF : PrimePair P) :
    (โ†‘IF.F)แถœ = โ†‘IF.I
    theorem Order.Ideal.PrimePair.disjoint {P : Type u_1} [Preorder P] (IF : PrimePair P) :
    Disjoint โ†‘IF.I โ†‘IF.F
    class Order.Ideal.IsPrime {P : Type u_1} [Preorder P] (I : Ideal P) extends I.IsProper :

    An ideal I is prime if its complement is a filter.

    Instances

      Create an element of type Order.Ideal.PrimePair from an ideal satisfying the predicate Order.Ideal.IsPrime.

      Equations
        Instances For
          theorem Order.Ideal.IsPrime.mem_or_mem {P : Type u_1} [SemilatticeInf P] {I : Ideal P} (hI : I.IsPrime) {x y : P} :
          x โŠ“ y โˆˆ I โ†’ x โˆˆ I โˆจ y โˆˆ I
          theorem Order.Ideal.IsPrime.of_mem_or_mem {P : Type u_1} [SemilatticeInf P] {I : Ideal P} [I.IsProper] (hI : โˆ€ {x y : P}, x โŠ“ y โˆˆ I โ†’ x โˆˆ I โˆจ y โˆˆ I) :
          theorem Order.Ideal.isPrime_iff_mem_or_mem {P : Type u_1} [SemilatticeInf P] {I : Ideal P} [I.IsProper] :
          I.IsPrime โ†” โˆ€ {x y : P}, x โŠ“ y โˆˆ I โ†’ x โˆˆ I โˆจ y โˆˆ I
          theorem Order.Ideal.IsPrime.compl_mem_of_notMem {P : Type u_1} [BooleanAlgebra P] {x : P} {I : Ideal P} (hI : I.IsPrime) (hxnI : x โˆ‰ I) :
          class Order.PFilter.IsPrime {P : Type u_1} [Preorder P] (F : PFilter P) :

          A filter F is prime if its complement is an ideal.

          Instances

            Create an element of type Order.Ideal.PrimePair from a filter satisfying the predicate Order.PFilter.IsPrime.

            Equations
              Instances For