Documentation Verification Report

Irreducible

📁 Source: Mathlib/RepresentationTheory/Irreducible.lean

Statistics

MetricCount
DefinitionsIsIrreducible
1
TheoremsalgebraMap_intertwiningMap_bijective_of_isAlgClosed, bijective_or_eq_zero, finrank_eq_one_of_isMulCommutative, injective_or_eq_zero, instIsSimpleModuleMonoidAlgebraAsModule, irreducible_iff_isSimpleModule_asModule, isSimpleModule_iff_irreducible_ofModule, is_simple_module_iff_irreducible_ofModule
8
Total9

Representation

Definitions

NameCategoryTheorems
IsIrreducible 📖MathDef
3 mathmath: isSimpleModule_iff_irreducible_ofModule, irreducible_iff_isSimpleModule_asModule, is_simple_module_iff_irreducible_ofModule

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_iff_isSimpleModule_asModule 📖mathematicalIsIrreducible
IsSimpleModule
MonoidAlgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidAlgebra.ring
DivisionRing.toRing
Field.toDivisionRing
asModule
Semifield.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupAsModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleMonoidAlgebraAsModule
isSimpleModule_iff
OrderIso.isSimpleOrder_iff
isSimpleModule_iff_irreducible_ofModule 📖mathematicalIsSimpleModule
MonoidAlgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidAlgebra.ring
DivisionRing.toRing
Field.toDivisionRing
IsIrreducible
RestrictScalars
CommSemiring.toSemiring
Semifield.toCommSemiring
RestrictScalars.module
MonoidAlgebra.semiring
AddCommGroup.toAddCommMonoid
MonoidAlgebra.algebra
Algebra.id
ofModule
isSimpleModule_iff
OrderIso.isSimpleOrder_iff
is_simple_module_iff_irreducible_ofModule 📖mathematicalIsSimpleModule
MonoidAlgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidAlgebra.ring
DivisionRing.toRing
Field.toDivisionRing
IsIrreducible
RestrictScalars
CommSemiring.toSemiring
Semifield.toCommSemiring
RestrictScalars.module
MonoidAlgebra.semiring
AddCommGroup.toAddCommMonoid
MonoidAlgebra.algebra
Algebra.id
ofModule
isSimpleModule_iff_irreducible_ofModule

Representation.IsIrreducible

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_intertwiningMap_bijective_of_isAlgClosed 📖mathematicalFunction.Bijective
Representation.IntertwiningMap
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Representation.IntertwiningMap.instSemiring
RingHom.instFunLike
algebraMap
Representation.IntertwiningMap.instAlgebra
IsScalarTower.to_smulCommClass'
Representation.instIsScalarTowerMonoidAlgebraAsModule
IsSimpleModule.algebraMap_end_bijective_of_isAlgClosed
instIsSimpleModuleMonoidAlgebraAsModule
Representation.instFiniteAsModule
Function.Bijective.of_comp_iff'
AlgEquiv.bijective
bijective_or_eq_zero 📖mathematicalFunction.Bijective
DFunLike.coe
Representation.IntertwiningMap
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Representation.IntertwiningMap.instFunLike
Representation.IntertwiningMap.instZero
RingHomInvPair.ids
IsScalarTower.to_smulCommClass'
Representation.instIsScalarTowerMonoidAlgebraAsModule
LinearEquiv.map_eq_zero_iff
LinearMap.bijective_or_eq_zero
instIsSimpleModuleMonoidAlgebraAsModule
finrank_eq_one_of_isMulCommutative 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
mul_comm
IsSimpleModule.finrank_eq_one_of_isMulCommutative
Representation.instIsScalarTowerMonoidAlgebraAsModule
instIsSimpleModuleMonoidAlgebraAsModule
Representation.instFiniteAsModule
injective_or_eq_zero 📖mathematicalDFunLike.coe
Representation.IntertwiningMap
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Representation.IntertwiningMap.instFunLike
Representation.IntertwiningMap.instZero
RingHomInvPair.ids
IsScalarTower.to_smulCommClass'
Representation.instIsScalarTowerMonoidAlgebraAsModule
LinearEquiv.map_eq_zero_iff
LinearMap.injective_or_eq_zero
instIsSimpleModuleMonoidAlgebraAsModule
instIsSimpleModuleMonoidAlgebraAsModule 📖mathematicalIsSimpleModule
MonoidAlgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidAlgebra.ring
DivisionRing.toRing
Field.toDivisionRing
Representation.asModule
Semifield.toCommSemiring
AddCommGroup.toAddCommMonoid
Representation.instAddCommGroupAsModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Representation.instModuleMonoidAlgebraAsModule
Representation.irreducible_iff_isSimpleModule_asModule

---

← Back to Index