Documentation

Mathlib.RepresentationTheory.Irreducible

Irreducible representations #

This file defines irreducible monoid representations.

@[reducible, inline]
abbrev Representation.IsIrreducible {G : Type u_1} {k : Type u_2} {V : Type u_3} [Monoid G] [Field k] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :

A representation ρ is irreducible if it is non-trivial and has no proper non-trivial subrepresentations.

Equations
    Instances For
      @[deprecated Representation.isSimpleModule_iff_irreducible_ofModule (since := "2026-02-09")]

      Alias of Representation.isSimpleModule_iff_irreducible_ofModule.

      theorem Representation.IsIrreducible.injective_or_eq_zero {G : Type u_1} {k : Type u_2} {V : Type u_3} {W : Type u_4} [Monoid G] [Field k] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {σ : Representation k G W} (f : ρ.IntertwiningMap σ) [ρ.IsIrreducible] :
      theorem Representation.IsIrreducible.bijective_or_eq_zero {G : Type u_1} {k : Type u_2} {V : Type u_3} {W : Type u_4} [Monoid G] [Field k] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {σ : Representation k G W} (f : ρ.IntertwiningMap σ) [ρ.IsIrreducible] [σ.IsIrreducible] :