Irreducible representations #
This file defines irreducible monoid representations.
@[reducible, inline]
abbrev
Representation.IsIrreducible
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
:
A representation ρ is irreducible if it is non-trivial and has no proper non-trivial
subrepresentations.
Equations
Instances For
theorem
Representation.irreducible_iff_isSimpleModule_asModule
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
:
theorem
Representation.isSimpleModule_iff_irreducible_ofModule
{G : Type u_1}
{k : Type u_2}
[Monoid G]
[Field k]
(M : Type u_5)
[AddCommGroup M]
[Module (MonoidAlgebra k G) M]
:
@[deprecated Representation.isSimpleModule_iff_irreducible_ofModule (since := "2026-02-09")]
theorem
Representation.is_simple_module_iff_irreducible_ofModule
{G : Type u_1}
{k : Type u_2}
[Monoid G]
[Field k]
(M : Type u_5)
[AddCommGroup M]
[Module (MonoidAlgebra k G) M]
:
Alias of Representation.isSimpleModule_iff_irreducible_ofModule.
instance
Representation.IsIrreducible.instIsSimpleModuleMonoidAlgebraAsModule
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
{ρ : Representation k G V}
[ρ.IsIrreducible]
:
IsSimpleModule (MonoidAlgebra k G) ρ.asModule
theorem
Representation.IsIrreducible.injective_or_eq_zero
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
{W : Type u_4}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
[AddCommGroup W]
[Module k W]
{ρ : Representation k G V}
{σ : Representation k G W}
(f : ρ.IntertwiningMap σ)
[ρ.IsIrreducible]
:
theorem
Representation.IsIrreducible.bijective_or_eq_zero
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
{W : Type u_4}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
[AddCommGroup W]
[Module k W]
{ρ : Representation k G V}
{σ : Representation k G W}
(f : ρ.IntertwiningMap σ)
[ρ.IsIrreducible]
[σ.IsIrreducible]
:
theorem
Representation.IsIrreducible.algebraMap_intertwiningMap_bijective_of_isAlgClosed
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
{ρ : Representation k G V}
[ρ.IsIrreducible]
[FiniteDimensional k V]
[IsAlgClosed k]
:
Function.Bijective ⇑(algebraMap k (ρ.IntertwiningMap ρ))
theorem
Representation.IsIrreducible.finrank_eq_one_of_isMulCommutative
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
[ρ.IsIrreducible]
[FiniteDimensional k V]
[IsAlgClosed k]
[IsMulCommutative G]
: